【題目】如圖,ABC是等腰直角三角形,延長(zhǎng)BCE使BE=BA,過(guò)點(diǎn)BBDAE于點(diǎn)D,BDAC交于點(diǎn)F,連接EF

(1)求證:BF=2AD;

(2)若CE=,求AC的長(zhǎng).

【答案】1)見(jiàn)解析(22+

【解析】試題分析:(1)由△ABC是等腰直角三角形,得到AC=BC,∠FCB=∠ECA=90°,由于AC⊥BE,BD⊥AE,根據(jù)垂直的定義得到∠CBF+∠CFB=90°,∠DAF+∠AFD=90°,由于∠CFB=∠AFD,于是得到∠CBF=∠CAE,證得△BCF≌△ACE,得出AE=BF,由于BE=BA,BD⊥AE,于是得到AD=ED,即AE=2AD,即可得到結(jié)論;

2)由(1)知△BCF≌△ACE,推出CF=CE=,在Rt△CEF中,EF==2,由于BD⊥AE,AD=ED,求得AF=FE=2,于是結(jié)論即可.

1)證明:∵△ABC是等腰直角三角形,

∴AC=BC,∴∠FCB=∠ECA=90°,

∵AC⊥BE,BD⊥AE,

∴∠CBF+∠CFB=90°,∠DAF+∠AFD=90°,

∵∠CFB=∠AFD,

∴∠CBF=∠CAE,

△BCF△ACE中,,

∴△BCF≌△ACE,

∴AE=BF,

∵BE=BABD⊥AE,

∴AD=ED,即AE=2AD,

∴BF=2AD

2)由(1)知△BCF≌△ACE

∴CF=CE=,

Rt△CEF中,EF==2,

∵BD⊥AE,AD=ED

∴AF=FE=2,

∴AC=AF+CF=2+

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如果買1本筆記本和1支鋼筆剛好需要6元錢,買1本筆記本和4支鋼筆,共需18元,那么筆記本和鋼筆的價(jià)格分別是多少?

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在ABC中,BC的垂直平分線EF交ABC的平分線BD于E,如果BAC=60°,ACE=24°,那么BCE的大小是( )

A.24° B.30° C.32° D.36°

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,拋物線經(jīng)過(guò)點(diǎn)A(-3,0),B(1,0),C(0,-3).

(1)求拋物線的解析式;

(2)若點(diǎn)P為第三象限內(nèi)拋物線上的一點(diǎn),設(shè)PAC的面積為S,求S的最大值并求出此時(shí)點(diǎn)P的坐標(biāo);

(3)設(shè)拋物線的頂點(diǎn)為D,DEx軸于點(diǎn)E,在y軸上是否存在點(diǎn)M,使得ADM是直角三角形?若存在,請(qǐng)直接寫出點(diǎn)M的坐標(biāo);若不存在,請(qǐng)說(shuō)明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知代數(shù)式6x1242x的值互為相反數(shù)那么x的值等于 ( )

A. 2 B. 1 C. 1 D. 2

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】下列命題:(1)相等的角是對(duì)頂角.(2) 同位角相等.(3)直角三角形的兩個(gè)銳角互余.(4)若兩條線段不相交,則兩條線段平行.其中正確的命題個(gè)數(shù)有( )

A. 1個(gè)B. 2個(gè)C. 3個(gè)D. 4個(gè)

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在直角坐標(biāo)系中,矩形OABC的頂點(diǎn)O在坐標(biāo)原點(diǎn),邊OA在x軸上,OC在y軸上,如果矩形OA′B′C′與矩形OABC關(guān)于點(diǎn)O位似,且矩形OA′B′C′的面積等于矩形OABC面積的,那么點(diǎn)B′的坐標(biāo)是( )

A.(﹣2,3) B.(2,﹣3)

C.(3,﹣2)或(﹣2,3) D.(﹣2,3)或(2,﹣3)

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】拋物線y=2(x+3)2+5的頂點(diǎn)坐標(biāo)是( )
A.(3,5)
B.(﹣3,5)
C.(3,﹣5)
D.(﹣3,﹣5)

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】-64的絕對(duì)值是_______.

查看答案和解析>>

同步練習(xí)冊(cè)答案