某河道上有一個(gè)半圓形的拱橋,河兩岸筑有攔水堤壩,其半圓形橋洞的橫截面如圖所示.已知上、下橋的坡面線ME、NF與半圓相切,上、下橋斜面的坡度i=1∶3.7,橋下水深OP=5米,水面寬度CD=24米.設(shè)半圓的圓心為O,直徑AB在坡角頂點(diǎn)M、N的連線上,求從M點(diǎn)上坡、過(guò)橋、下坡到N點(diǎn)的最短路徑長(zhǎng).(參考數(shù)據(jù):π≈3,≈1.7,tan15°=

解:連結(jié)OD、OE、OF,由垂徑定理知:PD=CD=12(m)
    在Rt△OPD中,OD==13(m)
    ∴OE=OD=13m
    ∵tan∠EMO=i= 1∶3.7 ,tan15°==≈1:3.7
    ∴∠EMO=15°
    由切線性質(zhì)知∠OEM=90°∴∠EOM=75°
    同理得∠NOF=75°∴∠EOF=180°-75°×2=30°
    在Rt△OEM中,tan15°==≈1∶3.7

        ∴EM=3.7×13=48.1(m)
又EF的弧長(zhǎng)==6.5(m)
∴48.1×2+6.5=102.7(m),
即從M點(diǎn)上坡、過(guò)橋、再下坡到N點(diǎn)的最短路徑長(zhǎng)為102.7米
(注:答案在102.5m—103m間只要過(guò)程正確,不扣分)

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

某河道上有一個(gè)半圓形的拱橋,河兩岸筑有攔水堤壩.其半圓形橋洞的橫截面如圖所示.已知上、下橋的坡面線ME、NF與半圓相切,上、下橋斜面的坡度i=1:3.7,橋下水深=5米.水面寬度CD=24米.設(shè)半圓的圓心為O,直徑AB在坡角頂點(diǎn)M、N的連線上.求從M點(diǎn)上坡、過(guò)橋、下坡到N點(diǎn)的最短路徑長(zhǎng).(參考數(shù)據(jù):π≈3,
3
≈1.7,tan15°=
1
2+
3

精英家教網(wǎng)

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

某河道上有一個(gè)半圓形的拱橋,河兩岸筑有攔水堤壩,其半圓形橋洞的橫截面如圖所示.已知上、下橋的坡面線ME、NF與半圓相切,上、下橋斜面的坡度i=1:3.7,橋下水深OP=5米,水面寬度CD=24米.設(shè)半圓的圓心為O,直徑AB在直角頂點(diǎn)M、N的連線上,求從M點(diǎn)上坡、過(guò)橋、下坡到N點(diǎn)的最短路徑長(zhǎng).(參考數(shù)據(jù):,

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源:2013年甘肅省蘭州市樹人中學(xué)中考數(shù)學(xué)模擬試卷(三)(解析版) 題型:解答題

某河道上有一個(gè)半圓形的拱橋,河兩岸筑有攔水堤壩.其半圓形橋洞的橫截面如圖所示.已知上、下橋的坡面線ME、NF與半圓相切,上、下橋斜面的坡度i=1:3.7,橋下水深=5米.水面寬度CD=24米.設(shè)半圓的圓心為O,直徑AB在坡角頂點(diǎn)M、N的連線上.求從M點(diǎn)上坡、過(guò)橋、下坡到N點(diǎn)的最短路徑長(zhǎng).(參考數(shù)據(jù):π≈3,≈1.7,tan15°=

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源:2011年湖北省荊門市中考數(shù)學(xué)試卷(解析版) 題型:解答題

某河道上有一個(gè)半圓形的拱橋,河兩岸筑有攔水堤壩.其半圓形橋洞的橫截面如圖所示.已知上、下橋的坡面線ME、NF與半圓相切,上、下橋斜面的坡度i=1:3.7,橋下水深=5米.水面寬度CD=24米.設(shè)半圓的圓心為O,直徑AB在坡角頂點(diǎn)M、N的連線上.求從M點(diǎn)上坡、過(guò)橋、下坡到N點(diǎn)的最短路徑長(zhǎng).(參考數(shù)據(jù):π≈3,≈1.7,tan15°=

查看答案和解析>>

同步練習(xí)冊(cè)答案