【題目】如圖1,拋物線經(jīng)過(guò),兩點(diǎn),拋物線與x軸的另一交點(diǎn)為A,連接AC、BC.
求拋物線的解析式及點(diǎn)A的坐標(biāo);
若點(diǎn)D是線段AC的中點(diǎn),連接BD,在y軸上是否存一點(diǎn)E,使得是以BD為斜邊的直角三角形?若存在,求出點(diǎn)E的坐標(biāo),若不存在,說(shuō)明理由;
如圖2,P為拋物線在第一象限內(nèi)一動(dòng)點(diǎn),過(guò)P作于Q,當(dāng)PQ的長(zhǎng)度最大時(shí),在線段BC上找一點(diǎn)M使的值最小,求的最小值.
【答案】(1);存在,或;的最小值是.
【解析】
利用待定系數(shù)法求拋物線的解析式,令解方程可得A的坐標(biāo);
根據(jù),構(gòu)建輔助圓,與y軸有兩個(gè)交點(diǎn)為點(diǎn)E,根據(jù)勾股定理列方程可得點(diǎn)E的坐標(biāo);
先作直線;,保證直線l與拋物線有一個(gè)公共點(diǎn),即,可得P的坐標(biāo),過(guò)P作軸,BC于M,此時(shí)的值最小,根據(jù)三角函數(shù)求確定其最小值是PN的長(zhǎng)即可.
解:把,代入拋物線中得:
,解得:,
拋物線的解析式為:,
當(dāng)時(shí),,
解得:,,
;
存在,如圖1,
,,
,
設(shè),
,
,
即,
,
,,
或;
,,
易得BC的解析式為:,
如圖2,作直線,
設(shè)直線l的解析式為:,
當(dāng)直線l與拋物線有一個(gè)公共點(diǎn)時(shí),這個(gè)公共點(diǎn)為P,此時(shí)PQ的長(zhǎng)最大,
則,
,
,
,
,
解得:,
,
過(guò)P作軸于N,交BC于M,
,
,
,
即的最小值是.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,已知AF分別與BD、CE交于點(diǎn)G、H,∠1=54°,∠2=126°.
(1)求證:BD∥CE;
(2)若AC⊥CE于C,交BD于B,FD⊥BD于D,交CE于E,探索∠A與∠F的數(shù)量關(guān)系,并證明你的結(jié)論.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知:如圖所示,△ABC中,∠BAC=90°,AB=AC,分別過(guò)點(diǎn)B、C作經(jīng)過(guò)點(diǎn)A的直線l的垂線段BD、CE,垂足分別D、E.
(1)求證:DE=BD+CE.
(2)如果過(guò)點(diǎn)A的直線經(jīng)過(guò)∠BAC的內(nèi)部,那么上述結(jié)論還成立嗎?請(qǐng)畫出圖形,直接給出你的結(jié)論(不用證明).
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,拋物線與x軸交于點(diǎn),與BC交于點(diǎn)C,連接AC、BC,已知.
求點(diǎn)B的坐標(biāo)及拋物線的解析式;
點(diǎn)P是線段BC上的動(dòng)點(diǎn)點(diǎn)P不與B、C重合,連接并延長(zhǎng)AP交拋物線于另一點(diǎn)Q,設(shè)點(diǎn)Q的橫坐標(biāo)為x.
記的面積為S,求S關(guān)于x的函數(shù)表達(dá)式并求出當(dāng)時(shí)x的值;
記點(diǎn)P的運(yùn)動(dòng)過(guò)程中,是否存在最大值?若存在,求出的最大值;若不存在,請(qǐng)說(shuō)明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,已知A ,D,B,E在同一條直線上,且AD = BE, AC = DF,補(bǔ)充下列其中一個(gè)條件后,不一定能得到△ABC≌△DEF 的是( )
A.BC = EFB.AC//DFC.∠C = ∠FD.∠BAC = ∠EDF
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】在一個(gè)不透明的袋里裝有分別標(biāo)有數(shù)字1,2,3,4,5的5個(gè)小球,除所有數(shù)字不同外,小球沒(méi)有其他分別,每次試驗(yàn)前先攪拌均勻.
若從中任取一球,球上的數(shù)字為奇數(shù)的概率為多少?
若從中任取一球不放回,再?gòu)闹腥稳?/span>1球,請(qǐng)用畫樹狀圖或列表的方法求出兩個(gè)球上的數(shù)字之和為偶數(shù)的概率.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知,點(diǎn)A(t,1)是平面直角坐標(biāo)系中第一象限的點(diǎn),點(diǎn)B,C分別是y軸負(fù)半軸和x軸正半軸上的點(diǎn),連接AB,AC,BC.
(1)如圖1,若OB=1,OC =,且A,B,C在同一條直線上,求t的值;
(2)如圖 2,當(dāng) t =1,∠ACO +∠ACB = 180°時(shí),求 BC + OC -OB 的值;
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖1,△CEF的頂點(diǎn)C、E、F分別與正方形ABCD的頂點(diǎn)C、A、B重合.
(1)若正方形的邊長(zhǎng)為,用含的代數(shù)式表示:正方形ABCD的周長(zhǎng)等于 ,△CEF的面積等于 .
(2)如圖2,將△CEF繞點(diǎn)A順時(shí)針旋轉(zhuǎn),邊CE和正方形的邊AD交于點(diǎn)P. 連結(jié)AE, 設(shè)旋轉(zhuǎn)角∠BCF=β.
①試證:∠ACF=∠DCE;
②若△AEP有一個(gè)內(nèi)角等于60°,求β的值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖所示,AD是△ABC的中線,AE⊥AB,AF⊥AC,且AE=AB,AF=AC,AD=3,AB=4.
(1)求AC長(zhǎng)度的取值范圍;
(2)求EF的長(zhǎng)度.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com