【題目】在直角坐標(biāo)系中,一個(gè)圖案上各個(gè)點(diǎn)的橫坐標(biāo)和縱坐標(biāo)分別加正數(shù)a(a>1),那么所得的圖案與原圖案相比 ( )
A. 形狀不變,大小擴(kuò)大到原來的a倍
B. 圖案向右平移了a個(gè)單位長度
C. 圖案向上平移了a個(gè)單位長度
D. 圖案向右平移了a個(gè)單位長度,并且向上平移了a個(gè)單位長度
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,△AOB是直角三角形,∠AOB=90°,OB=2OA,點(diǎn)A在反比例函數(shù)y=的圖象上.若點(diǎn)B在反比例函數(shù)y=的圖象上,則k的值為( )
A.-4 B.4 C.-2 D.2
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖一:在Rt△ABC中,∠C=90°AD、BE分別是△ABC中∠A、∠B的平分線,AD、BE交于點(diǎn)F,過F點(diǎn)做FH⊥AD交AC于點(diǎn)H,易證:AH+DB=AB;
(1)若將Rt△ABC中∠BAC、∠ABC的內(nèi)角平分線改成外角平分線,即:AF、BF分別是∠BAC、∠ABC的外角平分線交于F點(diǎn),FH⊥AF交直線AC于H點(diǎn),如圖二:請寫出線段AH、BD、AB之間的數(shù)量關(guān)系,并證明。
(2)若將Rt△ABC中∠BAC、∠ABC的內(nèi)角平分線改成一個(gè)是外角平分線,即:AF是∠A的內(nèi)角平分線,BE是∠B的外角平分線交于F點(diǎn),FH⊥AD交AC于點(diǎn)H.如圖三:請寫出線段AH、BD、AB之間的數(shù)量關(guān)系,無需證明。
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】小張騎自行車勻速從甲地到乙地,在途中休息了一段時(shí)間后,仍按原速行駛.他距乙地的距離y(km)與時(shí)間x(h)的關(guān)系如圖中折線所示,小李開車勻速從乙地到甲地,比小張晚出發(fā)一段時(shí)間,他距乙地的距離y(km)與時(shí)間x(h)的關(guān)系如圖中線段AB所示.
(1)小李到達(dá)甲地后,再經(jīng)過_______小時(shí)小張也到達(dá)乙地;小張騎自行車的速度是_______千米/小時(shí).
(2)小張出發(fā)幾小時(shí)與小李相距15千米?
(3)若小李想在小張休息期間與他相遇,則他出發(fā)的時(shí)間x應(yīng)在什么范圍?(直接寫出答案)
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,已知反比例函數(shù)y=的圖象經(jīng)過點(diǎn)A(-1, ).
(1)試確定此反比例函數(shù)的解析式;
(2)點(diǎn)O是坐標(biāo)原點(diǎn),將線段OA繞點(diǎn)O逆時(shí)針旋轉(zhuǎn)30°后得到線段OB,求出點(diǎn)B的坐標(biāo),并判斷點(diǎn)B是否在此反比例函數(shù)的圖象上.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,已知直線a,b,c,d,e,且∠1=∠2,∠3=∠4,則a與c平行嗎?為什么?
解:a與c平行.
理由:因?yàn)椤?=∠2(_________________),
所以a∥b(_________________).
因?yàn)椤?=∠4(_________________),
所以b∥c(_________________).
所以a∥c(_________________).
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com