【題目】在△ABC中,∠ACB=90°,BD是△ABC的角平分線,P是射線AC上任意一點 (不與A. D. C三點重合),過點P作PQ⊥AB,垂足為Q,交直線BD于E.
(1)如圖①,當點P在線段AC上時,說明∠PDE=∠PED.
(2)作∠CPQ的角平分線交直線AB于點F,則PF與BD有怎樣的位置關系?畫出圖形并說明理由。
【答案】(1)見解析;(2)PF∥BD;理由詳見解析;PF⊥BD,理由見解析;
【解析】
(1)由PQ與AB垂直,得到一對直角相等,理由直角三角形的兩銳角互余得到兩對角互余,再BD為角平分線,利用角平分線定義得到一對角相等,再由對頂角相等,利用等量代換即可得證;
(2)分兩種情況,當P在線段AC上時,如圖1所示,可得出PF與BD平行,由第一問的結論利用等角對等邊得到PD=PE,利用角平分線定義及外角性質(zhì)得到一對內(nèi)錯角相等,利用內(nèi)錯角相等兩直線平行即可得證;當P在AC延長線時,PF垂直于BD,由PD=PE,利用三線合一即可得證.
(1)∵PQ⊥AB,
∴∠EQB=∠C=90°,
∴∠BEQ+∠EBQ=90°,∠CBD+∠PDE=90°,
∵BD為∠ABC的平分線,
∴∠CBD=∠EBQ,
∵∠PED=∠BEQ,
∴∠PDE=∠PED;
(2)當P在線段AC上時,如圖1所示,此時PF∥BD,
理由為:∵∠PDE=∠PED,
∴PD=PE,
∵PF為∠CPQ的平分線,∠CPQ為△PDE的外角,
∴∠CPF=∠QPF=∠PDE=∠PED,
∴PF∥BD;
當P在線段AC延長線上時,如圖2所示,PF⊥BD,
理由為:∵∠PDE=∠PED,
∴PD=PE,
∵PM為∠CPQ的平分線,
∴PF⊥BD.
科目:初中數(shù)學 來源: 題型:
【題目】某縣教育局為了豐富初中學生的大課間活動,要求各學校開展形式多樣的陽光體育活動.某中學就“學生體育活動興趣愛好”的問題,隨機調(diào)查了本校某班的學生,并根據(jù)調(diào)查結果繪制成如下的不完整的扇形統(tǒng)計圖和條形統(tǒng)計圖:
(1)在這次調(diào)查中,喜歡籃球項目的同學有 人,在扇形統(tǒng)計圖中,“乒乓球”的百分比為 %,如果學校有800名學生,估計全校學生中有 人喜歡籃球項目.
(2)請將條形統(tǒng)計圖補充完整.
(3)在被調(diào)查的學生中,喜歡籃球的有2名女同學,其余為男同學.現(xiàn)要從中隨機抽取2名同學代表班級參加;@球隊,請直接寫出所抽取的2名同學恰好是1名女同學和1名男同學的概率.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】某學校舉行數(shù)學競賽,需購買兩種獎品共160件,其中種獎品的單價為12元,種獎品的單價為8元,且購買種獎品的數(shù)量不大于種獎品數(shù)量的3倍,假設購買種獎品的數(shù)量為件.
(1)根據(jù)題意填空:
購買種獎品的費用為___(元);
購買種獎品的費用為___(元);
(2)若購買兩種獎品所需的總費用為元,試求與的函數(shù)關系式,并求出的取值范圍;
(3)問兩種獎品各購買多少件時所需的總費用最少,并求出最少費用.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,在△ABC中,∠1=∠2,G為AD的中點,延長BG交AC于E、 F為AB上的一點,CF⊥AD于H,下列判斷正確的有( )
A.AD是△ABE的角平分線B.BE是△ABD邊AD上的中線
C.AH為△ABC的角平分線D.CH為△ACD邊AD上的高
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,在一面與地面垂直的圍墻的同側(cè)有一根高13米的旗桿AB和一根高度未知的電線桿CD,它們都與地面垂直,為了測得電線桿的高度,數(shù)學興趣小組的同學進行了如下測量某一時刻,在太陽光照射下,旗桿落在圍墻上的影子EF的長度為3米,落在地面上的影子BF的長為8米,而電線桿落在圍墻上的影子GH的長度為米,落在地面上的影子DH的長為6米,依據(jù)這些數(shù)據(jù),該小組的同學計算出了電線桿的高度是______米
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,在ABCD中, 對角線AC、BD相交于點O. E、F是對角線AC上的兩個不同點,當E、F兩點滿足下列條件時,四邊形DEBF不一定是平行四邊形( ).
A.AE=CFB.DE=BFC.D.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】某綜合實踐小組為了了解本校學生參加課外讀書活動的情況,隨機抽取部分學生,調(diào)查其最喜歡的圖書類別,并根據(jù)調(diào)查結果繪制成如下不完整的統(tǒng)計表與統(tǒng)計圖:
圖書類別 | 畫記 | 人數(shù) | 百分比 | ||
文學類 | |||||
藝體類 | 正 | 5 | |||
科普類 | |||||
其他 | 正正 | 14 | |||
合計 | a | 100% |
請結合圖中的信息解答下列問題:
(1)隨機抽取的樣本容量為________;
(2)在扇形統(tǒng)計圖中,“藝體類”所在的扇形圓心角應等于_________度;
(3)補全條形統(tǒng)計圖;
(4)已知該校有名學生,估計全校最喜歡文學類圖書的學生有________人.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖1,正方形ABCD中,AB=4cm,點P從點D出發(fā)沿DA向點A勻速運動,速度是1cm/s,同時,點Q從點A出發(fā)沿AB方向,向點B勻速運動,速度是2cm/s,連接PQ、CP、CQ,設運動時間為t(s)(0<t<2)
(1)是否存在某一時刻t,使得PQ∥BD?若存在,求出t值;若不存在,說明理由
(2)設△PQC的面積為s(cm2),求s與t之間的函數(shù)關系式;
(3)如圖2,連接AC,與線段PQ相交于點M,是否存在某一時刻t,使S△QCM:S△PCM=3:5?若存在,求出t值;若不存在,說明理由.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】二次函數(shù)(a、b、c為常數(shù)且a≠0)中的x與y的部分對應值如下表:
x | ﹣3 | ﹣2 | ﹣1 | 0 | 1 | 2 | 3 | 4 | 5 |
y | 12 | 5 | 0 | ﹣3 | ﹣4 | ﹣3 | 0 | 5 | 12 |
給出了結論:
(1)二次函數(shù)有最小值,最小值為﹣3;
(2)當時,y<0;
(3)二次函數(shù)的圖象與x軸有兩個交點,且它們分別在y軸兩側(cè).
則其中正確結論的個數(shù)是
A. 3 B. 2 C. 1 D. 0
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com