【題目】如圖.在直角坐標(biāo)系中,矩形ABCO的邊OA在x軸上,邊OC在y軸上,點B的坐標(biāo)為(1,3),將矩形沿對角線AC翻折,B點落在D點的位置,且AD交y軸于點E。那么點D的坐標(biāo)為( 。
A.
B.
C.
D.
【答案】A
【解析】
如圖,過D作DF⊥AF于F,根據(jù)折疊可以證明△CDE≌△AOE,然后利用全等三角形的性質(zhì)得到OE=DE,OA=CD=1,設(shè)OE=x,那么CE=3-x,DE=x,利用勾股定理即可求出OE的長度,而利用已知條件可以證明△AEO∽△ADF,而AD=AB=3,接著利用相似三角形的性質(zhì)即可求出DF、AF的長度,也就求出了D的坐標(biāo).
解:如圖,過D作DF⊥AF于F,
∵點B的坐標(biāo)為(1,3),
∴AO=1,AB=3,
根據(jù)折疊可知:CD=OA,
而∠ADC=∠AOE=90°,∠DEC=∠AEO,
∴△CDE≌△AOE,
∴OE=DE,OA=CD=1,
設(shè)OE=x,那么CE=3-x,DE=x,
∴在Rt△DCE中,CE2=DE2+CD2,
∴(3-x)2=x2+12,
∴x=,
又DF⊥AF,
∴DF∥EO,
∴△AEO∽△ADF,
而AD=AB=3,
∴AE=CE=3-=,
∴,
即 ,
∴DF=,AF=,
∴OF=-1=,
∴D的坐標(biāo)為(-, ).
故選A.
【地哪家】
本題主要考查了圖形的折疊問題,也考查了坐標(biāo)與圖形的性質(zhì),解題的關(guān)鍵是把握折疊的隱含條件,利用隱含條件得到全等三角形和相似三角形,然后利用它們的性質(zhì)即可解決問題.
科目:初中數(shù)學(xué) 來源: 題型:
【題目】在平面直角坐標(biāo)系中,拋物線與x軸交于點A和點B(點A在點B左側(cè)),
(1)若拋物線的對稱軸是直線x=1,求出點A和點B的坐標(biāo),并畫出此時函數(shù)的圖象;
(2)當(dāng)已知點P(m,2),Q(-m,2m-1).若拋物線與線段PQ恰有一個公共點,結(jié)合函數(shù)圖象,求m的取值范圍.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】某企業(yè)復(fù)工之后,舉行了一個簡單的技工比賽,參賽的五名選手在單位時間內(nèi)加工零件的合格率分別為:94.3% ,96.1% , 94.3% ,91.7% ,93.5%.關(guān)于這組數(shù)據(jù),下列說法正確的是(。
A.平均數(shù)是93.96%B.方差是0
C.中位數(shù)是93.5%D.眾數(shù)是94.3%
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】(本小題滿分12分)
已知:把Rt△ABC和Rt△DEF按如圖(1)擺放(點C與點E重合),點B、C(E)、F在同一條直線上.∠ACB = ∠EDF = 90°,∠DEF = 45°,AC = 8 cm,BC = 6 cm,EF = 9 cm.
如圖(2),△DEF從圖(1)的位置出發(fā),以1 cm/s的速度沿CB向△ABC勻速移動,在△DEF移動的同時,點P從△ABC的頂點B出發(fā),以2 cm/s的速度沿BA向點A勻速移動.當(dāng)△DEF的頂點D移動到AC邊上時,△DEF停止移動,點P也隨之停止移動.DE與AC相交于點Q,連接PQ,設(shè)移動時間為t(s)(0<t<4.5).
解答下列問題:
(1)當(dāng)t為何值時,點A在線段PQ的垂直平分線上?
(2)連接PE,設(shè)四邊形APEC的面積為y(cm2),求y與t之間的函數(shù)關(guān)系式;是否存在某一時刻t,使面積y最?若存在,求出y的最小值;若不存在,說明理由.
(3)是否存在某一時刻t,使P、Q、F三點在同一條直線上?若存在,求出此時t的值;若不存在,說明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】某超市銷售一種商品,成本每千克40元,規(guī)定每千克售價不低于成本,且不高于80元,經(jīng)市場調(diào)查,每天的銷售量y(千克)與每千克售價x(元)滿足一次函數(shù)關(guān)系,部分?jǐn)?shù)據(jù)如下表:
售價x(元/千克) | 50 | 60 | 70 |
銷售量y(千克) | 100 | 80 | 60 |
(1)求y與x之間的函數(shù)表達(dá)式;
(2)設(shè)商品每天的總利潤為W(元),則當(dāng)售價x定為多少元時,廠商每天能獲得最大利潤?最大利潤是多少?
(3)如果超市要獲得每天不低于1350元的利潤,且符合超市自己的規(guī)定,那么該商品每千克售價的取值范圍是多少?請說明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,△ABC內(nèi)接于⊙O,∠CBG=∠A,CD為直徑,OC與AB相交于點E,過點E作EF⊥BC,垂足為F,延長CD交GB的延長線于點P,連接BD.
(1)求證:PG與⊙O相切;
(2)若=,求的值;
(3)在(2)的條件下,若⊙O的半徑為8,PD=OD,求OE的長.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】小帶和小路兩個人開車從A城出發(fā)勻速行駛至B城.在整個行駛過程中,小帶和小路兩人車離開A城的距離y(km)與行駛的時間t(h)之間的函數(shù)關(guān)系如圖所示.有下列結(jié)論;①A,B兩城相距300 km;②小路的車比小帶的車晚出發(fā)1 h,卻早到1 h;③小路的車出發(fā)后2.5 h追上小帶的車;④當(dāng)小帶和小路的車相距50 km時,t=或t=.其中正確的結(jié)論有( )
A. ①②③④B. ①②④
C. ①②D. ②③④
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,把一塊長為40cm,寬為30cm的矩形硬紙板的四角剪去四個相同小正方形,然后把紙板的四邊沿虛線折起,并用膠帶粘好,即可做成一個無蓋紙盒.若該無蓋紙盒的底面積為600cm2,設(shè)剪去小正方形的邊長為xcm,則可列方程為( )
A.(30﹣2x)(40﹣x)=600B.(30﹣x)(40﹣x)=600
C.(30﹣x)(40﹣2x)=600D.(30﹣2x)(40﹣2x)=600
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,已知動點A在函數(shù)的圖象上,AB⊥x軸于點B,AC⊥y軸于點C,延長CA交以A為圓心AB長為半徑的圓弧于點E,延長BA交以A為圓心AC長為半徑的圓弧于點F,直線EF分別交x軸、y軸于點M、N,當(dāng)NF=4EM時,圖中陰影部分的面積等于_____.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com