【題目】如圖,在△ABC中,點(diǎn)P在AB上,下列四個(gè)條件中:①∠ACP=∠B;②∠APC=∠ACB;③AC2=APAB;④ABCP=APCB,能滿足△APC與△ACB相似的條件有______________.
【答案】①②③
【解析】
根據(jù)有兩組角對(duì)應(yīng)相等的兩個(gè)三角形相似可對(duì)①②進(jìn)行判斷;根據(jù)兩組對(duì)應(yīng)邊的比相等且夾角對(duì)應(yīng)相等的兩個(gè)三角形相似可對(duì)③④進(jìn)行判斷.
①、當(dāng)∠ACP=∠B,
∵∠A=∠A,
∴△APC∽△ACB,∴①符合題意;
②、當(dāng)∠APC=∠ACB,
∵∠A=∠A,
∴△APC∽△ACB,∴②符合題意;
③、當(dāng)AC2=APAB,
即AC:AB=AP:AC,
∵∠A=∠A
∴△APC∽△ACB,∴③符合題意;
④、∵當(dāng)ABCP=APCB,即PC:BC=AP:AB,
而∠PAC=∠CAB,
∴不能判斷△APC和△ACB相似,∴④不符合題意;
故答案為①②③.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,已知一次函數(shù)y1=ax+b的圖象與x軸、y軸分別交于點(diǎn)D、C,與反比例函數(shù)y2=的圖象交于A、B兩點(diǎn),且點(diǎn)A的坐標(biāo)是(1,3)、點(diǎn)B的坐標(biāo)是(3,m).
(1)求一次函數(shù)與反比例函數(shù)的解析式;
(2)求C、D兩點(diǎn)的坐標(biāo),并求△AOB的面積;
(3)根據(jù)圖象直接寫出:當(dāng)x在什么取值范圍時(shí),y1>y2?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知:如圖,在 Rt△ABC 中,∠C=90°,∠B=30°,AD 平分∠BAC.
(1)求證:點(diǎn) D 在 AB 的垂直平分線上;
(2)若 CD=2,求 BC 的長(zhǎng).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】在平面直角坐標(biāo)系中,將某點(diǎn)(橫坐標(biāo)與縱坐標(biāo)不相等)的橫坐標(biāo)與縱坐標(biāo)互換后得到的點(diǎn)叫這個(gè)點(diǎn)的“互換點(diǎn)”,如(-3,5)與(5,-3)是一對(duì)“互換點(diǎn)”.
(1)以O為圓心,半徑為5的圓上有無數(shù)對(duì)“互換點(diǎn)”,請(qǐng)寫出一對(duì)符合條件的“互換點(diǎn)”;
(2)點(diǎn)M,N是一對(duì)“互換點(diǎn)”,點(diǎn)M的坐標(biāo)為(m,n),且(m>n),⊙P經(jīng)過點(diǎn)M,N.
①點(diǎn)M的坐標(biāo)為(4,0),求圓心P所在直線的表達(dá)式;
②⊙P的半徑為5,求m-n的取值范圍.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】學(xué)校選學(xué)生會(huì)正副主席,需要從甲班的2名男生1名女生(男生用A,B表示,女生用a表示)和乙班的1名男生1名女生(男生用C表示,女生用b表示)共5人中隨機(jī)選出2名同學(xué).
(1)用樹狀圖或列表法列出所有可能情形;
(2)求2名同學(xué)來自不同班級(jí)的概率;
(3)求2名同學(xué)恰好1男1女的概率.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在平面直角坐標(biāo)系中,點(diǎn)A(0,4),弧MN所在圓的圓心在x軸上,其中M(0,3),N(4,5),點(diǎn)P為弧MN上一點(diǎn),則線段AP長(zhǎng)度的最小值為___________________.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】在矩形ABCD中,AB=3,AD=4,動(dòng)點(diǎn)Q從點(diǎn)A出發(fā),以每秒1個(gè)單位的速度,沿AB向點(diǎn)B移動(dòng);同時(shí)點(diǎn)P從點(diǎn)B出發(fā),仍以每秒1個(gè)單位的速度,沿BC向點(diǎn)C移動(dòng),連接QP,QD,PD.若兩個(gè)點(diǎn)同時(shí)運(yùn)動(dòng)的時(shí)間為x秒(0<x≤3),解答下列問題:
(1)設(shè)△QPD的面積為S,用含x的函數(shù)關(guān)系式表示S;當(dāng)x為何值時(shí),S有最大值?并求出最小值;
(2)是否存在x的值,使得QP⊥DP?試說明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,⊙O的直徑AB=18,AC和BD是它的兩條切線,CD與⊙O相切于E,且與AC、BD相交于點(diǎn)C、D,設(shè)AC=x,BD=y,試求xy的值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,小穎在教學(xué)樓四層樓上,每層樓高均為3米,測(cè)得目高1.5米,看到校園里的圓形花園最近點(diǎn)的俯角為60°,最遠(yuǎn)點(diǎn)的俯角為30°,請(qǐng)你幫小穎算出圓形花園的面積是多少平方米?(結(jié)果保留1位小數(shù))
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com