【題目】如圖 1,直線分別交于點(在點的右側(cè)),若

1)求證:;

2)如圖2所示,點之間,且位于的異側(cè),連 ,則三個角之間存在何種數(shù)量關系,并說明理由.

3)如圖 3 所示,在線段上,點在直線的下方,點是直線上一點(在的左側(cè)),連接,,則請直接寫出之間的數(shù)量

【答案】1)證明過程見解析;(2,理由見解析;(3N+PMH=180°.

【解析】

1)根據(jù)同旁內(nèi)角互補,兩直線平行即可判定ABCD;

2)設∠N=,∠M=,∠AEM=,∠NFD=,過MMPAB,過NNQAB可得∠PMN=-,∠QNM=-,根據(jù)平行線性質(zhì)得到-=-,化簡即可得到;

3)過點MMIABPNO,過點NNQCDPNR,根據(jù)平行線的性質(zhì)可得∠BPM=PMI,由已知得到∠MON=MPN+PMI=3PMI及∠RFN=180°-NFH-HFD=180°-3HFD,根據(jù)對頂角相等得到∠PRF=FNP+RFN=FNP+180°-3RFM,化簡得到∠FNP+2PMI-2RFM=180°-PMH,根據(jù)平行線的性質(zhì)得到3PMI+FNP+FNH=180°3RFM+FNH=180°,兩個等式相減即可得到∠RFM-PMI=FNP,將該等式代入∠FNP+2PMI-2RFM=180°-PMH,即得到FNP=180°-PMH,即N+PMH=180°.

1)證明:∵∠1=BEF,

∴∠BEF+2=180°

ABCD.

2)解:

設∠N=,∠M=,∠AEM=,∠NFD=

MMPAB,過NNQAB

MPAB,NQAB

MPNQABCD

∴∠EMP=,∠FNQ=

∴∠PMN=-,∠QNM=-

-=-

=-

故答案為

3)解:N+PMH=180°

過點MMIABPNO,過點NNQCDPNR.

,MIABNQCD

ABMINQCD

∴∠BPM=PMI

∵∠MPN=2MPB

∴∠MPN=2PMI

∴∠MON=MPN+PMI=3PMI

∵∠NFH=2HFD

∴∠RFN=180°-NFH-HFD=180°-3HFD

∵∠RFN=HFD

∴∠PRF=FNP+RFN=FNP+180°-3RFM

∴∠MON+PRF+RFM=360°-OMF

3PMI+FNP+180°-3RFM+RFM=360°-OMF

∴∠FNP+2PMI-2RFM=180°-PMH

3PMI+PNH=180°

3PMI+FNP+FNH=180°

3RFM+FNH=180°

3PMI-3RFM+FNP=0°

即∠RFM-PMI=FNP

∴∠FNP+2PMI-2RFM=FNP-2(RFM-PMI)=180°-PMH

FNP-2×FNP=180°-PMH

FNP=180°-PMH

N+PMH=180°

故答案為N+PMH=180°

練習冊系列答案
相關習題

科目:初中數(shù)學 來源: 題型:

【題目】在某體育用品商店,購買50根跳繩和80個毽子共用1120元,購買30根跳繩和50個毽子共用680.

1)跳繩、毽子的單價各是多少元?

2)該店在元旦節(jié)期間開展促銷活動,所有商品按同樣的折數(shù)打折銷售.節(jié)日期間購買100根跳繩和100個毽子只需1700元,該店的商品按原價的幾折銷售?

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】已知:如圖1,在面積為3的正方形ABCD中,E,F(xiàn)分別是BC和CD邊上的兩點,AE⊥BF于點G,且BE=1.

(1)求證:△ABE≌△BCF;
(2)求出△ABE和△BCF重疊部分(即△BEG)的面積;
(3)現(xiàn)將△ABE繞點A逆時針方向旋轉(zhuǎn)到△AB′E′(如圖2),使點E落在CD邊上的點E′處,問△ABE在旋轉(zhuǎn)前后與△BCF重疊部分的面積是否發(fā)生了變化?請說明理由.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】先化簡,再求值:( )÷ ,其中x=( 1﹣(π﹣1)0+

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】x,y定義一種新運算T,規(guī)定:Tx,y)=(其中a,b均為非零常數(shù)),這里等式右邊是通常的四則運算,例如:T0,1)=b,已知T1,1)=2.5,T4,﹣2)=4

1)求a,b的值;

2)若關于m的不等式組恰好有2個整數(shù)解,求實數(shù)P的取值范圍.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,已知一次函數(shù)ykxb的圖象經(jīng)過A(2,1),B(13)兩點,并且交x軸于點C,交y軸于點D.

1)求該一次函數(shù)的解析式;

2)求點C和點D的坐標;

3)求△AOB的面積。

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖①,點P是正方形ABCD的BC邊上的一點,以DP為邊長的正方形DEFP與正方形ABCD在BC的同側(cè),連接AC,F(xiàn)B.

(1)請你判斷FB與AC又怎樣的位置關系?并證明你的結(jié)論;
(2)若點P在射線CB上運動時,如圖②,判斷(1)中的結(jié)論FB與AC的位置關系是否仍然成立?并說明理由;

(3)當點P在射線CB上運動時,請你指出點E的運動路線,不必說明理由.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,已知點P是∠AOB角平分線上的一點,∠AOB=60°,PDOAMOP的中點,DM=4cm,如果點COB上一個動點,則PC的最小值為(  )

A. 2B. C. 4D.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,中,,點的延長線上,,,交于點

(1)如圖1,請寫出的數(shù)量關系;

(2)如圖2,若平分,,求證:

(3)(2)的條件下,如圖3,連接,若中點,中點,,,,求的長.

查看答案和解析>>

同步練習冊答案