【題目】如圖,AB為⊙O的直徑,PD切⊙O于點(diǎn)C,交AB的延長線于點(diǎn)D,且∠D=2∠CAD.
(1)求∠D的度數(shù);
(2)若CD=2,求BD的長.
【答案】(1)45°;(2).
【解析】
試題(1)根據(jù)等腰三角形性質(zhì)和三角形外角性質(zhì)求出∠COD=2∠A,求出∠D=∠COD,根據(jù)切線性質(zhì)求出∠OCD=90°,即可求出答案;
(2)求出OC=CD=2,根據(jù)勾股定理求出BD即可.
試題解析:(1)∵OA=OC,
∴∠A=∠ACO,
∴∠COD=∠A+∠ACO=2∠A,
∵∠D=2∠A,
∴∠D=∠COD,
∵PD切⊙O于C,
∴∠OCD=90°,
∴∠D=∠COD=45°;
(2)∵∠D=∠COD,CD=2,
∴OC=OB=CD=2,
在Rt△OCD中,由勾股定理得:22+22=(2+BD)2,
解得:BD=.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在正方形ABCD中,點(diǎn)E是BC的中點(diǎn),連接DE,過點(diǎn)A作AG⊥ED交DE于點(diǎn)F,交CD于點(diǎn)G.
(1)證明:△ADG≌△DCE;(2)連接BF,證明:AB=FB.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】中,,于點(diǎn),于點(diǎn),為邊的中點(diǎn),連結(jié),,則下列結(jié)論:①②③為等邊三角形④若,則,則正確結(jié)論是________.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,已知拋物線經(jīng)過兩點(diǎn)A(﹣3,0),B(0,3),且其對(duì)稱軸為直線x=﹣1.
(1)求此拋物線的解析式.
(2)若點(diǎn)Q是對(duì)稱軸上一動(dòng)點(diǎn),當(dāng)OQ+BQ最小時(shí),求點(diǎn)Q的坐標(biāo).
(3)若點(diǎn)P是拋物線上點(diǎn)A與點(diǎn)B之間的動(dòng)點(diǎn)(不包括點(diǎn)A,點(diǎn)B),求△PAB面積的最大值,并求出此時(shí)點(diǎn)P的坐標(biāo).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】在一元二次方程中,若系數(shù)和可在0,1,2,3中取值,則其中有實(shí)數(shù)解的方程的個(gè)數(shù)是___ 個(gè),寫出其中有兩個(gè)相等實(shí)數(shù)根的一元二次方程_________.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在平面直角坐標(biāo)系中,矩形OABC的兩邊OA,OC分別在x軸和y軸上,并且OA=5,OC=3.若把矩形OABC繞著點(diǎn)O逆時(shí)針旋轉(zhuǎn),使點(diǎn)A恰好落在BC邊上的A1處,則點(diǎn)C的對(duì)應(yīng)點(diǎn)C1的坐標(biāo)為_____.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在矩形ABCD中,點(diǎn)E是AD上的一個(gè)動(dòng)點(diǎn),連接BE,作點(diǎn)A關(guān)于BE的對(duì)稱點(diǎn)F,且點(diǎn)F落在矩形ABCD的內(nèi)部,連結(jié)AF、BF、EF,過點(diǎn)F作GF⊥AF交AD于點(diǎn)G,設(shè)AD:AE=n.
(1)線段AE和線段EG的數(shù)量關(guān)系是: ;
(2)如圖②,當(dāng)點(diǎn)F落在AC上時(shí),用含n的代數(shù)式表示AD:AB的值;
(3)若AD=4AB,且△FCG為直角三角形,求n的值.(直接寫出結(jié)果).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】定義:若某拋物線上有兩點(diǎn)A、B關(guān)于原點(diǎn)對(duì)稱,則稱該拋物線為“完美拋物線”.已知二次函數(shù)y=ax2-2mx+c(a,m,c均為常數(shù)且ac≠0)是“完美拋物線”:
(1)試判斷ac的符號(hào);
(2)若c=-1,該二次函數(shù)圖象與y軸交于點(diǎn)C,且S△ABC=1.
①求a的值;
②當(dāng)該二次函數(shù)圖象與端點(diǎn)為M(-1,1)、N(3,4)的線段有且只有一個(gè)交點(diǎn)時(shí),求m的取值范圍.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,點(diǎn)A是直線y=﹣x上的動(dòng)點(diǎn),點(diǎn)B是x軸上的動(dòng)點(diǎn),若AB=2,則△AOB面積的最大值為_____.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com