精英家教網 > 初中數學 > 題目詳情
已知a、b為常數,并且多項式ax2﹣2xy+y與多項式3x2+2bxy+3y的差中不含二次項,則(a+b)(a﹣b)=
[     ]
A.8
B.﹣8
C.4
D.不確定
練習冊系列答案
相關習題

科目:初中數學 來源: 題型:

已知一次函數y=kx+m,二次函數y=2ax2+2bx+c和y=ax2+bx+c-1的圖象分別為l、E1、E2,l交E1于B、C兩點,且滿足下列條件:
I)b為整數.
II)B(2-2
2
,3-2
2
),C(2+2
2
,3+2
2
).
Ⅲ)兩個二次函數的最小值差為1.
(1)如l與E2交于A、D兩點,求|AD|值.
(2)問是否存在一點P,從P出發(fā)作一射線分別交E1、E2于P1,P2,使得PP1:PP2為常數,并簡述你的理由.

查看答案和解析>>

科目:初中數學 來源: 題型:

已知關于x的二次函數y=ax2+bx+c(a>0)的圖象經過點C(0,1),且與x軸交于不同的兩點A、B,點A的坐標是(1,0)
(1)求c的值;
(2)求a的取值范圍;
(3)該二次函數的圖象與直線y=1交于C、D兩點,設A、B、C、D四點構成的四邊形的對角線相交于點P,記△PCD的面積為S1,△PAB的面積為S2,當0<a<1時,求證:S1-S2為常數,并求出該常數.

查看答案和解析>>

科目:初中數學 來源: 題型:044

已知拋物線m為常數)經過點(04

⑴求m的值;

⑵將該拋物線先向右、再向下平移得到另一條拋物線。已知這條平移后的拋物線滿足下述兩個條件:它的對稱軸(設為直線l2)與平移前的拋物線的對稱軸(設為l1)關于y軸對稱;它所對應的函數的最小值為-8.

①試求平移后的拋物線所對應的函數關系式;

②試問在平移后的拋物線上是否存在著點P,使得以3為半徑的⊙P既與x軸相切,又與直線l2相交?若存在,請求出點P的坐標,并求出直線l2被⊙P所截得的弦AB的長度;若不存在,請說明理由。

查看答案和解析>>

科目:初中數學 來源:2010年天津市初中畢業(yè)生學業(yè)考試數學試卷 題型:044

已知反比例函數(k為常數,k≠1).

(Ⅰ)若點A(1,2)在這個函數的圖象上,求k的值;

(Ⅱ)若在這個函數圖象的每一支上,y隨x的增大而減小,求k的取值范圍;

(Ⅲ)若k=13,試判斷點B(3,4),C(2,5)是否在這個函數的圖象上,并說明理由.

查看答案和解析>>

科目:初中數學 來源: 題型:

已知反比例函數為常數,).

(Ⅰ)若點在這個函數的圖象上,求的值;

(Ⅱ)若在這個函數圖象的每一支上,的增大而減小,求的取值范圍;

(Ⅲ)若,試判斷點是否在這個函數的圖象上,并說明理由.

查看答案和解析>>

同步練習冊答案