【題目】如圖,矩形ABCD中,P為CD中點,點Q為AB上的動點(不與A,B重合).過Q作QM⊥PA于M,QN⊥PB于N.設AQ的長度為x,QM與QN的長度和為y.則能表示y與x之間的函數(shù)關系的圖象大致是( 

AB. C. D.

【答案】D

【解析】

試題分析:矩形ABCD中,P為CD中點,所以PA=PB,假設當Q在A、B上時,QM與QN的長度和y為PA、PB,即此時y是相等的,又因為點Q為AB上的動點(不與A,B重合),所以這兩點用空心表示;當Q點在AB的中點時,PQAB,PQ=AQ=BQ;過Q作QM⊥PA于M,QN⊥PB于NQM=AP的一半,QN=BP的一半;QM與QN的長度和為y=AP,跟Q在A、B時相等,所以表示y與x之間的函數(shù)關系的圖象是一條平行于X軸的線段,所以應選D

練習冊系列答案
相關習題

科目:初中數(shù)學 來源: 題型:

【題目】在平面直角坐標系xOy中,拋物線y=﹣x2+2bx﹣3的對稱軸為直線x=2.

(1)求b的值;

(2)在y軸上有一動點P(0,m),過點P作垂直y軸的直線交拋物線于點A(x1,y1),B(x2,y2),其中x1<x2

當x2﹣x1=3時,結合函數(shù)圖象,求出m的值;

把直線PB下方的函數(shù)圖象,沿直線PB向上翻折,圖象的其余部分保持不變,得到一個新的圖象W,新圖象W在0≤x≤5時,﹣4≤y≤4,求m的取值范圍.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖, O的內接三角形, O上一點,延長至點,使

1)求證:

2)若,求證:AD+BD=CD

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】某蔬菜加工公司先后兩批收購蒜苔(tái)共100噸,第一批蒜苔價格為1萬元/噸;因蒜苔大量上市,第二批價格跌至0.4萬元/噸,這兩批蒜苔共用去52萬元.

1)求兩批各購進蒜苔多少噸?

2)公司收購后對蒜苔進行加工,分為粗加工和精加工兩種.粗加工每噸利潤400元,精加工每噸利潤1600元要求精加工數(shù)量不大于粗加工數(shù)量的三倍.為獲得最大利潤,精加工數(shù)量應為多少噸?最大利潤是多少?

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】閱讀材料:

小明在學習二次根式后,發(fā)現(xiàn)一些含根號的式子可以寫成另一個式子的平方,如.善于思考的小明進行了以下探索:

(其中、、、均為整數(shù)),則有

,.這樣小明就找到了一種把類似的式子化為平方式的方法.

請你仿照小明的方法探索并解決下列問題:

1)當、、均為正整數(shù)時,若,用含的式子分別表示、,得:  ,  

2)利用所探索的結論,找一組正整數(shù)、、填空:         ;

3)若,且、、均為正整數(shù),求的值?

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,在△ABC,DBC邊的中點,分別過點B、C作射線AD的垂線,垂足分別為E、F,連接BFCE.

(1)求證:四邊形BECF是平行四邊形;

(2)AF=FD,在不添加輔助線的條件下,直接寫出與△ABD面積相等的所有三角形.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】將一張長與寬之比為的矩形紙片ABCD進行如下操作:對折并沿折痕剪開,發(fā)現(xiàn)每一次所得到的兩個矩形紙片長與寬之比都是(每一次的折痕如下圖中的虛線所示).已知AB=1,則第3次操作后所得到的其中一個矩形紙片的周長是 ;第2016次操作后所得到的其中一個矩形紙片的周長是

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】二次函數(shù)y=ax2+bx+c(a≠0)的圖象如圖所示,則下列結論中正確的是

A.a>0

B.當-1<x<3時,y>0

C.c<0

D.當x≥1時,y隨x的增大而增大

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,△ABC的三邊AB、BCCA長分別是2030、40,其三條角平分線將△ABC分為三個三角形,則SABOSBCOSCAO等于( )

A. 111

B. 123

C. 234

D. 345

查看答案和解析>>

同步練習冊答案