如圖,的弦與直線徑相交,若,則=_____°.
40
欲求∠DCF,又已知一圓心角,可利用圓周角與圓心角的關(guān)系求解.
解:∵AB為圓的直徑,
∴∠ADB=90°,
∵∠BAD=50°,
∴∠DBA=40°,
∴∠ACD=40°.
故答案為:40°.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源:不詳 題型:單選題

用半徑為12㎝,圓心角為90°的扇形紙片,圍成一個(gè)圓錐的側(cè)面,這個(gè)圓錐的底面半徑為(    )
A.1.5㎝B.3㎝C.6㎝D.12㎝

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源:不詳 題型:單選題

已知⊙O1與⊙O2相切,⊙O1的半徑為9 cm,⊙O2的半徑為2 cm,則O1O2的長(zhǎng)
A.1 cmB.5 cmC.1 cm或5 cmD.0.5cm或2.5cm

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

(本小題10分)在等腰梯形ABCD中,AD∥BC,且AD=2,以CD為直徑作⊙
O1,交BC于點(diǎn)E,過點(diǎn)E作EF⊥AB于F,建立如圖12所示的平面直角坐標(biāo)系,已知A,
B兩點(diǎn)的坐標(biāo)分別為A(0,2),B(-2,0).
(1)求C,D兩點(diǎn)的坐標(biāo).
(2)求證:EF為⊙O1的切線.
(3)探究:如圖13,線段CD上是否存在點(diǎn)P,使得線段PC的長(zhǎng)度與P點(diǎn)到y(tǒng)軸的距離相等?如果存在,請(qǐng)找出P點(diǎn)的坐標(biāo);如果不存在,請(qǐng)說(shuō)明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源:不詳 題型:填空題

如圖,△ABC是等腰直角三角形,∠ACB=90°,AB=AC,把△ABC繞點(diǎn)A按順時(shí)針方向旋轉(zhuǎn)45°后得到△AB’C’,若AB=2,則線段BC在上述旋轉(zhuǎn)過程中所掃過部分(陰影部分)的面積是___________ (結(jié)果保留π)。

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

(本題滿分8分)如圖,AB是⊙O的直徑,過B點(diǎn)作⊙O的切線,交弦AE的延
長(zhǎng)線于點(diǎn)C,作,垂足為D,若,,求DE的長(zhǎng).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源:不詳 題型:填空題

(2011?常州)如圖,DE是⊙O的直徑,弦AB⊥CD,垂足為C,若AB=6,CE=1,則OC=  ,CD=  

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

(8分)如圖9,在⊙O中,點(diǎn)C為劣弧AB的中點(diǎn),連接AC并延長(zhǎng)至D,使CA=CD,連接DB并延長(zhǎng)交⊙O于點(diǎn)E,連接AE.
(1)求證:AE是⊙O的直徑;
(2)如圖10,連接CE,⊙O的半徑為5,AC長(zhǎng)為4,求陰影部分面積之和.(保留∏與根號(hào))

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源:不詳 題型:填空題

已知相切兩圓的半徑分別是方程x2-4x+3=0的兩根,

則兩圓的圓心距是          。

查看答案和解析>>

同步練習(xí)冊(cè)答案