【題目】如圖,拋物線與軸交于點(diǎn),與軸交于點(diǎn)、,點(diǎn)坐標(biāo)為.
求該拋物線的解析式;
拋物線的頂點(diǎn)為,在軸上找一點(diǎn),使最小,并求出點(diǎn)的坐標(biāo);
點(diǎn)是線段上的動(dòng)點(diǎn),過點(diǎn)作,交于點(diǎn),連接.當(dāng)的面積最大時(shí),求點(diǎn)的坐標(biāo);
若平行于軸的動(dòng)直線與該拋物線交于點(diǎn),與直線交于點(diǎn),點(diǎn)的坐標(biāo)為.問:是否存在這樣的直線,使得是等腰三角形?若存在,請求出點(diǎn)的坐標(biāo);若不存在,請說明理由.
【答案】(1);(2)點(diǎn)的坐標(biāo)為;(3);(4)的坐標(biāo)為:或或或.
【解析】
(1)把A、C兩點(diǎn)坐標(biāo)代入拋物線解析式可求得a、c的值,可求得拋物線解析;
(2)可求得點(diǎn)C關(guān)于x軸的對稱點(diǎn)C′的坐標(biāo),連接C′N交x軸于點(diǎn)K,再求得直線C′K的解析式,可求得K點(diǎn)坐標(biāo);
(3)過點(diǎn)E作EG⊥x軸于點(diǎn)G,設(shè)Q(m,0),可表示出AB、BQ,再證明△BQE≌△BAC,可表示出EG,可得出△CQE關(guān)于m的解析式,再根據(jù)二次函數(shù)的性質(zhì)可求得Q點(diǎn)的坐標(biāo);
(4)分DO=DF、FO=FD和OD=OF三種情況,分別根據(jù)等腰三角形的性質(zhì)求得F點(diǎn)的坐標(biāo),進(jìn)一步求得P點(diǎn)坐標(biāo)即可.
∵拋物線經(jīng)過點(diǎn),,
∴,解得,
∴拋物線解析式為;
由可求得拋物線頂點(diǎn)為,
如圖,作點(diǎn)關(guān)于軸的對稱點(diǎn),連接交軸于點(diǎn),則點(diǎn)即為所求,
設(shè)直線的解析式為,
把、點(diǎn)坐標(biāo)代入可得,解得,
∴直線的解析式為,
令,解得,
∴點(diǎn)的坐標(biāo)為;
設(shè)點(diǎn),過點(diǎn)作軸于點(diǎn),如圖,
由,得,,
∴點(diǎn)的坐標(biāo)為,,,
又∵,
∴,
∴,即,
解得;
∴.
又∵,
∴當(dāng)時(shí),有最大值,此時(shí);
存在.在中,
若,∵,,
∴.
又在中,,
∴.
∴.
∴.
此時(shí),點(diǎn)的坐標(biāo)為.
由,得,.
此時(shí),點(diǎn)的坐標(biāo)為:或;
若,過點(diǎn)作軸于點(diǎn).
由等腰三角形的性質(zhì)得:,
∴.
∴在等腰直角中,.
∴.
由,得,.
此時(shí),點(diǎn)的坐標(biāo)為:或;
若,
∵,且.
∴.
∴點(diǎn)到的距離為.
而,與矛盾.
∴在上不存在點(diǎn)使得.
此時(shí),不存在這樣的直線,使得是等腰三角形.
綜上所述,存在這樣的直線,使得是等腰三角形.所求點(diǎn)的坐標(biāo)為:或或或.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】關(guān)于x的一元二次方程(c+a)x2+2bx+(c-a)=0,其中a、b、c分別為△ABC三邊的長.
(1)如果方程有兩個(gè)相等的實(shí)數(shù)根,試判斷△ABC的形狀并說明理由;
(2)已知a:b:c=3:4:5,求該一元二次方程的根.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知點(diǎn)P為拋物線y=x2+2x﹣3在第一象限內(nèi)的一個(gè)動(dòng)點(diǎn),且P關(guān)于原點(diǎn)的對稱點(diǎn)P′恰好也落在該拋物線上,則點(diǎn)P′的坐標(biāo)為( 。
A. (﹣1,﹣1) B. (﹣2,﹣) C. (﹣,﹣2﹣1) D. (﹣,﹣2)
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】兩組鄰邊分別相等的四邊形叫做“箏形”,如圖,四邊形ABCD是一個(gè)箏形,其中,,詹姆斯在探究箏形的性質(zhì)時(shí),得到如下結(jié)論:
;;≌;四邊形ABCD的面積其中正確的結(jié)論有
A. 1個(gè) B. 2個(gè) C. 3個(gè) D. 4個(gè)
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,設(shè)一個(gè)三角形的三邊分別是3,13m,8.
(1)求m的取值范圍;
(2)是否存在整數(shù)m使三角形的周長為偶數(shù)?若存在,求出三角形的周長;若不存在,說明理由;
(3)如圖,在(2)的條件下,當(dāng)AB=8,AC=13m,BC=3時(shí),若D是AB的中點(diǎn),連CD,P是CD上動(dòng)點(diǎn)(不與C,D重合,當(dāng)P在線段CD上運(yùn)動(dòng)時(shí),有兩個(gè)式子):① ;②,其中有一個(gè)的值不變,另一個(gè)的值改變。問題:
A.請判斷出誰不變,誰改變;
B.若不變的求出其值,若改變的求出變化的范圍。
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】貴州省是我國首個(gè)大數(shù)據(jù)綜合試驗(yàn)區(qū),大數(shù)據(jù)在推動(dòng)經(jīng)濟(jì)發(fā)展、改善公共服務(wù)等方面日益顯示出巨大的價(jià)值,為創(chuàng)建大數(shù)據(jù)應(yīng)用示范城市,我市某機(jī)構(gòu)針對市民最關(guān)心的四類生活信息進(jìn)行了民意調(diào)查(被調(diào)查者每人限選一項(xiàng)),下面是部分四類生活信息關(guān)注度統(tǒng)計(jì)圖表,請根據(jù)圖中提供的信息解答下列問題:
(1)本次參與調(diào)查的人數(shù)有 人;
(2)關(guān)注城市醫(yī)療信息的有 人,并補(bǔ)全條形統(tǒng)計(jì)圖;
(3)扇形統(tǒng)計(jì)圖中,D部分的圓心角是 度;
(4)說一條你從統(tǒng)計(jì)圖中獲取的信息.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,P是等邊△ABC內(nèi)部一點(diǎn),∠APB,∠BPC,∠CPA的大小之比是5:6:7,則以PA、PB、PC為邊的三角形的三個(gè)內(nèi)角的大小之比是(從小到大)( )
A.2:3:4B.4:5:6C.3:4:5D.不確定
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在直角坐標(biāo)系中,A(-a,0),B(b,0),C(0,c),且滿足.
(1)如圖1,過B作BD⊥AC,交y軸于M,垂足為D,求M點(diǎn)的坐標(biāo).
(2)如圖2,若a=3,AC=6,點(diǎn)P為線段AC上一點(diǎn),D為x軸負(fù)半軸上一點(diǎn),且PD=PO,∠DPO=45°,求點(diǎn)D的坐標(biāo).
(3)如圖3,M在OC上,E在AC上,滿足∠CME=∠OMA,EF⊥AM交AO于G,垂足為F,試猜想線段OG,OM,CM三者之間的數(shù)量關(guān)系,并給出證明.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】下列從左邊到右邊的變形,是因式分解的是( )
A.y﹣5y﹣6=(y﹣6)(y+1)B.a+4a﹣3=a(a+4)﹣3
C.x(x﹣1)=x﹣xD.m+n=(m+n)(m﹣n)
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com