在平面直角坐標(biāo)系中,已知二次函數(shù)的圖象與軸相交于點(diǎn),頂點(diǎn)為,點(diǎn)在這個(gè)二次函數(shù)圖象的對稱軸上.若四邊形是一個(gè)邊長為2且有一個(gè)內(nèi)角為的菱形.求此二次函數(shù)的表達(dá)式.
y=(x-1)2-1;y=(x-1)2-;y=-(x-1)2+1;y=-(x-1)2+

試題分析:根據(jù)題意,畫出圖形,可得以下四種情況:
(1)以菱形長對角線兩頂點(diǎn)作為A、B,且拋物線開口向上;
(2)以菱形長對角線兩頂點(diǎn)作為A、B,且拋物線開口向下;
(3)以菱形短對角線兩頂點(diǎn)作為A、B,且拋物線開口向上;
(4)以菱形短對角線兩頂點(diǎn)作為A、B,且拋物線開口向下,
解答時(shí)都利用四邊形ACBD是一個(gè)邊長為2且有一個(gè)內(nèi)角為60°的條件根據(jù)解直角三角形的相關(guān)知識解答.
本題共有4種情況.
設(shè)二次函數(shù)的圖象的對稱軸與x軸相交于點(diǎn)E.
(1)如圖①,
當(dāng)∠CAD=60°時(shí),
因?yàn)锳CBD是菱形,一邊長為2,
所以DE=1,BE=,
所以點(diǎn)D的坐標(biāo)(1,1),點(diǎn)C的坐標(biāo)為(1,-1),
解得k=-1,a=
所以y=(x-1)2-1.

(2)如圖②,當(dāng)∠ACB=60°時(shí),由菱形性質(zhì)知點(diǎn)A的坐標(biāo)為(0,0),點(diǎn)C的坐標(biāo)為(1,-).
解得k=-,a=,
所以y=(x-1)2-
同理可得:y=-(x-1)2+1,y=-(x-1)2+
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源:不詳 題型:解答題

如圖,已知拋物線y=x2+bx+c經(jīng)過A(-1, 0)、B(4, 5)兩點(diǎn),過點(diǎn)B作BC⊥x軸,垂足為C.
(1)求拋物線的解析式;
(2)求tan∠ABO的值;
(3)點(diǎn)M是拋物線上的一個(gè)點(diǎn),直線MN平行于y軸交直線AB于N,如果以M、N、B、C為頂點(diǎn)的四邊形是平行四邊形,求出點(diǎn)M的橫坐標(biāo).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:解答題

已知二次函數(shù)(m是常數(shù))
(1)求證:不論m為何值,該函數(shù)的圖像與x軸沒有公共點(diǎn);
(2)把該函數(shù)的圖像沿x軸向下平移多少個(gè)單位長度后,得到的函數(shù)的圖像與x軸只有一個(gè)公共點(diǎn)?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:解答題

已知,如圖二次函數(shù)y=ax2+bx+c(a≠0)的圖象與y軸交于點(diǎn)C(0,4)與x軸交于點(diǎn)A、B,點(diǎn)B(4,0),拋物線的對稱軸為x=1.直線AD交拋物線于點(diǎn)D(2,m),
(1)求二次函數(shù)的解析式并寫出D點(diǎn)坐標(biāo);
(2)點(diǎn)Q是線段AB上的一動(dòng)點(diǎn),過點(diǎn)Q作QE∥AD交BD于E,連結(jié)DQ,當(dāng)△DQE的面積最大時(shí),求點(diǎn)Q的坐標(biāo);
(3)拋物線與y軸交于點(diǎn)C,直線AD與y軸交于點(diǎn)F,點(diǎn)M為拋物線對稱軸上的動(dòng)點(diǎn),點(diǎn)N在x軸上,當(dāng)四邊形CMNF周長取最小值時(shí),求出滿足條件的點(diǎn)M和點(diǎn)N的坐標(biāo).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:解答題

已知拋物線,
(1)若求該拋物線與x軸的交點(diǎn)坐標(biāo);
(2)若 ,證明拋物線與x軸有兩個(gè)交點(diǎn);
(3)若且拋物線在區(qū)間上的最小值是-3,求b的值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:解答題

如圖1,在菱形ABCD中,對角線AC、BD相交于點(diǎn)O,AC=8,BD=6.現(xiàn)有兩動(dòng)點(diǎn)P、Q分別從A、C兩點(diǎn)同時(shí)出發(fā),點(diǎn)P以每秒1個(gè)單位長的速度由點(diǎn)A向點(diǎn)D做勻速運(yùn)動(dòng),點(diǎn)Q沿折線CB—BA向點(diǎn)A做勻速運(yùn)動(dòng).
(1)點(diǎn)P將要運(yùn)行路徑AD的長度為     ;點(diǎn)Q將要運(yùn)行的路徑折線CB—BA的長度為        .
(2)當(dāng)點(diǎn)Q在BA邊上運(yùn)動(dòng)時(shí),若點(diǎn)Q的速度為每秒2個(gè)單位長,設(shè)運(yùn)動(dòng)時(shí)間為t秒.
①求△APQ的面積S關(guān)于t的函數(shù)關(guān)系式,并求自變量t的取范圍;
②求當(dāng)t為何值時(shí),S有最大值,最大值是多少?
(3)如圖2,若點(diǎn)Q的速度為每秒a個(gè)單位長(a≤),當(dāng)t =4秒時(shí):
①此時(shí)點(diǎn)Q是在邊CB上,還是在邊BA上呢?
②△APQ是等腰三角形,請求出a的值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:填空題

拋物線y =-2x2-3的頂點(diǎn)坐標(biāo)是                 

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:填空題

已知二次函數(shù)y=-x2+2x+m的部分圖象如圖所示,則關(guān)于x的一元二次方程的解為                      。

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:解答題

一家用電器開發(fā)公司研制出一種新型電子產(chǎn)品,每件的生產(chǎn)成本為18元,按定價(jià)40元出售,每月可銷售20萬件.為了增加銷量,公司決定采取降價(jià)的辦法,經(jīng)市場調(diào)研,每降價(jià)1元,月銷售量可增加2萬件.
⑴ 求出月銷售量y(萬件)與銷售單價(jià)x(元)之間的函數(shù)關(guān)系式;
⑵ 求出月銷售利潤z(萬元)與銷售單價(jià)x(元)之間的函數(shù)關(guān)系式,并在下面坐標(biāo)系中,畫出圖象草圖;

⑶ 為了使月銷售利潤不低于480萬元,請借助⑵中所畫圖象進(jìn)行分析,說明銷售單價(jià)的取值范圍.

查看答案和解析>>

同步練習(xí)冊答案