【題目】如圖,菱形ABCD的周長為40cm,對角線AC、BD相交于點(diǎn)O,DE⊥AB,垂足為E,DE:AB=4:5,則下列結(jié)論:①DE=8cm;②BE=4cm;③BD=4 cm;④AC=8 cm;⑤S菱形ABCD=80cm,正確的有( )
A.①②④⑤
B.①②③④
C.①③④⑤
D.①②③④⑤
【答案】B
【解析】解:∵菱形ABCD的周長為40cm,
∴AB= ×4cm=10cm,
∵DE:AB=4:5,
∴DE=8cm,
故①正確;
∵DE⊥AB,且AD=10cm,DE=8cm,
∴AE= = =6(cm),
∴BE=AB﹣AE=10cm﹣6cm=4cm,
故②正確;
∵DE=8cm,BE=4cm,
∴BD= = =4 (cm),
故③正確;
∵四邊形ABCD是菱形,
∴BO= BD=2 cm,且AC⊥BD,
∴AO= = =4 (cm),
∴AC=2AO=8 cm,
故④正確;
∴S菱形ABCD= ACBD= ×8 ×4 =80(cm2),
故⑤不正確,單位錯誤;
∴正確的為①②③④,
故選B.
【考點(diǎn)精析】本題主要考查了菱形的性質(zhì)的相關(guān)知識點(diǎn),需要掌握菱形的四條邊都相等;菱形的對角線互相垂直,并且每一條對角線平分一組對角;菱形被兩條對角線分成四個全等的直角三角形;菱形的面積等于兩條對角線長的積的一半才能正確解答此題.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在ABCD中,E、F分別為邊AB、CD的中點(diǎn),BD是對角線,過點(diǎn)A作AG∥DB交CB的延長線于點(diǎn)G.
(1)求證:DE∥BF;
(2)若∠G=90°,求證:四邊形DEBF是菱形.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】學(xué)校為了獎勵初三優(yōu)秀畢業(yè)生,計劃購買一批平板電腦和一批學(xué)習(xí)機(jī),經(jīng)投標(biāo),購買1臺平板電腦3 000元,購買1臺學(xué)習(xí)機(jī)800元.
(1)學(xué)校根據(jù)實(shí)際情況,決定購買平板電腦和學(xué)習(xí)機(jī)共100臺,要求購買的總費(fèi)用不超過168 000元,則購買平板電腦最多多少臺?
(2)在(1)的條件下,購買學(xué)習(xí)機(jī)的臺數(shù)不超過平板電腦臺數(shù)的1.7倍.請問有哪幾種購買方案?哪種方案最省錢?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】一次函數(shù)y=kx+b的圖象如圖所示,則k、b的符號( )
A.k<0,b>0
B.k>0,b>0
C.k<0,b<0
D.k>0,b<0
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知水銀體溫計的讀數(shù)y(℃)與水銀柱的長度x(cm)之間是一次函數(shù)關(guān)系,現(xiàn)有一支水銀體溫計,其部分刻度線不清晰(如圖),表中記錄的是該體溫計部分清晰刻度線及其對應(yīng)水銀柱的長度.
水銀柱的長度x(cm) | 4.0 | … | 8.0 | 9.6 |
體溫計的度數(shù)y(℃) | 35.0 | … | 40.0 | 42.0 |
(1)求y關(guān)于x的函數(shù)關(guān)系式(不需要寫出函數(shù)自變量x的取值范圍);
(2)用該體溫計測體溫時,水銀柱的長度為6.0cm,求此時體溫計的讀數(shù).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】下列命題中正確的是( ).
A.所有等腰三角形都相似B.兩邊成比例的兩個等腰三角形相似
C.有一個角相等的兩個等腰三角形相似D.有一個角是100°的兩個等腰三角形相似
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】根據(jù)圖形填空:
(1)若直線ED,BC被直線AB所截,則∠1和__________是同位角.
(2)若直線ED,BC被直線AF所截,則∠3和__________是內(nèi)錯角.
(3)∠1和∠3是直線AB,AF被直線__________所截構(gòu)成的__________角.
(4)∠2和∠4是直線__________,__________被直線BC所截構(gòu)成的__________角.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】(10分)如圖,拋物線與x軸交于點(diǎn)A和點(diǎn)B(1,0),與y軸交于點(diǎn)C(0,3),其對稱軸l為.
(1)求拋物線的解析式并寫出其頂點(diǎn)坐標(biāo);
(2)若動點(diǎn)P在第二象限內(nèi)的拋物線上,動點(diǎn)N在對稱軸l上.
①當(dāng)PA⊥NA,且PA=NA時,求此時點(diǎn)P的坐標(biāo);
②當(dāng)四邊形PABC的面積最大時,求四邊形PABC面積的最大值及此時點(diǎn)P的坐標(biāo).
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com