【題目】如圖,在梯形ABCD中,AD∥BC,AB=DC=8,∠B=60°,BC=12,連接AC.
(1)求tan∠ACB的值;
(2)若M、N分別是AB、DC的中點,連接MN,求線段MN的長.
【答案】(1);(2)8
【解析】
(1)作梯形的一條高AE,發(fā)現30°的直角三角形ABE,根據銳角三角函數求得BE,AE的長,再進一步求得CE的長,從而完成求解過程;
(2)顯然MN是梯形的中位線,主要是求得上底的長即可.再作梯形的另一條高,根據全等三角形和矩形的性質求得梯形的上底.
(1)如圖,作AE⊥BC于點E.
在Rt△ABE中,
BE=ABcosB=8×cos60°=4,
AE=ABsinB=8×sin60°=4,
∴CE=BC﹣BE=12﹣4=8.
在Rt△ACE中,
tan∠ACB=.
(2)作DF⊥BC于F,則四邊形AEFD是矩形.
∴AD=EF,DF=AE.
∵AB=DC,∠AEB=∠DFC=90°,
∴Rt△ABE≌Rt△DCF(HL)
∴CF=BE=4,
EF=BC﹣BE﹣CF=12﹣4﹣4=4,
∴AD=4.
又∵M、N分別是AB、DC的中點,
∴MN是梯形ABCD的中位線,
∴MN=(AD+BC)=(4+12)=8.
科目:初中數學 來源: 題型:
【題目】如圖,直角坐標系中,拋物線y=a( x-4 )2-16(a>0)交x軸于點E,F(E在F的左邊),交y軸于點C,對稱軸MN交x軸于點H;直線y=x+b分別交x,y軸于點A,B.
(1)寫出該拋物線頂點D的坐標及點C的縱坐標(用含a的代數式表示).
(2)若AF=AH=OH,求證:∠CEO=∠ABO.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】已知關于x的一元二次方程mx2﹣(m﹣1)x﹣1=0.
(1)求證:這個一元二次方程總有兩個實數根;
(2)若二次函數y=mx2﹣(m﹣1)x﹣1有最大值0,則m的值為 ;
(3)若x1、x2是原方程的兩根,且=2x1x2+1,求m的值.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,□ABCD的對角線AC、BD相交于點O,AE=CF.
(1)求證:△BOE≌△DOF;
(2)若BD=EF,連接DE、BF,判斷四邊形EBFD的形狀,并說明理由.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】小亮一家在一湖泊中游玩,湖泊中有一孤島,媽媽在孤島P處觀看小亮與爸爸在湖中劃船(如圖所示).小船從P處出發(fā),沿北偏東60°方向劃行200米到A處,接著向正南方向劃行一段時間到B處.在B處小亮觀測到媽媽所在的P處在北偏西37°的方向上,這時小亮與媽媽相距多少米(精確到1米)?
(參考數據:sin37°≈0.60,cos37°≈0.80,tan37°≈0.75,≈1.41,≈1.73)
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】一次函數的圖象經過點A(2,1)和點B(0,2).
(1)求出函數的關系式;
(2)在平面置角坐標系內畫一次函數的圖象,回答下列問題:
①y的值隨著x的值的增大而 ,它的圖象與x軸的交點坐標是 .
②下列點在一次函數圖象上的是 ;
(1,),(﹣2,3),(6,﹣5)
③當x ,時,y>0.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,在矩形ABCD中,沿EF將矩形折疊,使A、C重合,AC與EF交于點H.
(1)求證:△ABE≌△AGF;
(2)若AB=6,BC=8,求△ABE的面積.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】為了貫徹“減負增效”精神,掌握九年級600名學生每天的自主學習情況,某校學生會隨機抽查了九年級的部分學生,并調查他們每天自主學習的時間.根據調查結果,制作了兩幅不完整的統(tǒng)計圖(圖1,圖2),請根據統(tǒng)計圖中的信息回答下列問題:
(1)本次調查的學生人數是 人;
(2)圖2中α是 度,并將圖1條形統(tǒng)計圖補充完整;
(3)請估算該校九年級學生自主學習時間不少于1.5小時有 人;
(4)老師想從學習效果較好的4位同學(分別記為A、B、C、D,其中A為小亮)隨機選擇兩位進行學習經驗交流,用列表法或樹狀圖的方法求出選中小亮A的概率.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,正方形ABCD的頂點A在x軸的正半軸上,頂點C在y軸的正半軸上,點B在雙曲線(x<0)上,點D在雙曲線(x>0)上,點D的坐標是 (3,3)
(1)求k的值;
(2)求點A和點C的坐標.
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com