【題目】某單位招聘員工,采取筆試與面試相結(jié)合的方式,兩項成績的原始分均為100分,前6名選手的得分如下:
根據(jù)規(guī)定,筆試成績和面試成績按一定的百分比折合成綜合成績(綜合成績的滿分仍為100分)
(1)這6名選手筆試成績的平均數(shù)是_____分,中位數(shù)是_____分,眾數(shù)是______分.
(2)現(xiàn)已知1號選手的綜合成績?yōu)?/span>88分,求筆試成績和面試成績的百分比各為多少?
【答案】(1),84.5, 84.(2)筆試成績和面試成績各占的百分比是40%,60%.
【解析】
(1)根據(jù)平均數(shù)的計算公式可計算平均數(shù),根據(jù)中位數(shù)把這組數(shù)據(jù)從小到大排列,再找出最中間兩個數(shù)的平均數(shù)就是中位數(shù),再找出出現(xiàn)的次數(shù)最多的數(shù)即是眾數(shù);
(2)先設(shè)筆試成績和面試成績各占的百分比是x,y,根據(jù)題意列出方程組,求出x,y的值即可;
(1),
則這六名選手筆試成績的平均數(shù)為,
把這組數(shù)據(jù)從小到大排列為,80,84,84,85,90,92,
最中間兩個數(shù)的平均數(shù)是(84+85)÷2=84.5(分),
則這6名選手筆試成績的中位數(shù)是84.5分,
84出現(xiàn)了2次,出現(xiàn)的次數(shù)最多,則這6名選手筆試成績的眾數(shù)是84分.
故依次填:,84.5, 84.
(2)設(shè)筆試成績和面試成績各占的百分比是x,y,根據(jù)題意得:
解得:,
筆試成績和面試成績各占的百分比是40%,60%;
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,已知點的坐標是,過作軸于,在軸正半軸上截取,連接.
(1)求點的坐標及的解析式;
(2)過作于,求證:;
(3)關(guān)于軸的對稱點為,在上取點,連接,動點沿運動,在上的運動速度每秒1個單位長度,在上運動速度每秒2個單位長度,當在何處時,運動的時間最短?請求出的坐標.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,正方形ABCD邊長為4,點P從點A運動到點B,速度為1,點Q沿B﹣C﹣D運動,速度為2,點P、Q同時出發(fā),則△BPQ的面積y與運動時間t(t≤4)的函數(shù)圖象是( 。
A. B. C. D.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在矩形中,,動點從點出發(fā),沿射線以每秒個單位的速度向點方向運動,連接,把沿翻折,得到.設(shè)點的運動時間為.
(1)若,當三點在同一直線上時,求的值;
(2)若點到直線的距離等于,求的值;
(3)若的最小值為,直接寫出的值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在矩形ABCD中,AB=1,BC=2,點E在AD上,且ED=2AE.
(1)求證:△ABC∽△EAB.
(2)AC與BE交于點H,求HC的長.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,兩艘海監(jiān)船剛好在某島東西海岸線上的A、B兩處巡邏,同時發(fā)現(xiàn)一艘不明國籍船只停在C處海域,AB=60(+3)海里,在B處測得C在北偏東45°方向上,A處測得C在北偏西30°方向上,在海岸線AB上有一等他D,測得AD=100海里.
(1)分別求出AC,BC(結(jié)果保留根號)
(2)已知在燈塔D周圍80海里范圍內(nèi)有暗礁群,在A處海監(jiān)船沿AC前往C處盤看,圖中有無觸礁的危險?請說明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】發(fā)現(xiàn):已知△ABC中,AE是△ABC的角平分線,∠B=72°,∠C=36°
(1)如圖1,若AD⊥BC于點D,求∠DAE的度數(shù);
(2)如圖2,若P為AE上一個動點(P不與A、E重合),且PF⊥BC于點F時,∠EPF= °.
(3)探究:如圖2△ABC中,已知∠B,∠C均為一般銳角,∠B>∠C,AE是△ABC的角平分線,若P為線段AE上一個動點(P不與E重合),且PF⊥BC于點F時,請寫出∠EPF與∠B,∠C的關(guān)系,并說明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知拋物線y=ax2+bx+c與x軸交于A、B兩點,與y軸交于點C,其中點B在x軸的正半軸上,點C在y軸的正半軸上,線段OB、OC的長(OB<OC)是方程x2﹣10x+16=0的兩個根,且拋物線的對稱軸是直線x=﹣2.
(1)求A、B、C三點的坐標;
(2)求此拋物線的表達式;
(3)連接AC、BC,若點E是線段AB上的一個動點(與點A、點B不重合),過點E作EF∥AC交BC于點F,連接CE,設(shè)AE的長為m,△CEF的面積為S,求S與m之間的函數(shù)關(guān)系式,并寫出自變量m的取值范圍;
(4)在(3)的基礎(chǔ)上試說明S是否存在最大值?若存在,請求出S的最大值,并求出此時點E的坐標,判斷此時△BCE的形狀;若不存在,請說明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在小山的東側(cè)A莊,有一熱氣球,由于受西風(fēng)的影響,以每分鐘35米的速度沿著與水平方向成75度角的方向飛行,40分鐘時到達C處,此時氣球上的人發(fā)現(xiàn)氣球與山頂P點及小山西側(cè)的B莊在一條直線上,同時測得B莊的俯角為30度,又在A莊測得山頂P的仰角為45度,求A莊與B莊的距離___________,山高__________.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com