精英家教網 > 初中數學 > 題目詳情

【題目】為確保信息安全,在傳輸時往往需加密,發(fā)送方發(fā)出一組密碼a,b,c時,則接收方對應收到的密碼為A,B,C.雙方約定:A=2a﹣b,B=2b,C=b+c,例如發(fā)出1,2,3,則收到0,4,5
(1)當發(fā)送方發(fā)出一組密碼為2,3,5時,則接收方收到的密碼是多少?
(2)當接收方收到一組密碼2,8,11時,則發(fā)送方發(fā)出的密碼是多少?

【答案】
(1)

解:由題意得: ,

解得:A=1,B=6,C=8,

答:接收方收到的密碼是1、6、8


(2)

解:由題意得:

解得:a=3,b=4,c=7,

答:發(fā)送方發(fā)出的密碼是3、4、7


【解析】(1)根據題意可得方程組,再解方程組即可.(2)根據題意可得方程組,再解方程組即可.此題主要考查了方程組的應用,關鍵是正確理解題意,根據密文與明文之間的關系列出方程組.

練習冊系列答案
相關習題

科目:初中數學 來源: 題型:

【題目】如圖,二次函數y=﹣x2+3x+m的圖象與x軸的一個交點為B(4,0),另一個交點為A,且與y軸相交于C點

(1)求m的值及C點坐標;
(2)在直線BC上方的拋物線上是否存在一點M,使得它與B,C兩點構成的三角形面積最大,若存在,求出此時M點坐標;若不存在,請簡要說明理由
(3)P為拋物線上一點,它關于直線BC的對稱點為Q
①當四邊形PBQC為菱形時,求點P的坐標;
②點P的橫坐標為t(0<t<4),當t為何值時,四邊形PBQC的面積最大,請說明理由.

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】如圖,已知MB=ND,MBA=NDC,下列條件中不能判定ABMCDN的是(

A. M=N B. AM=CN C. AB=CD D. AMCN

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】重慶市2017年女子迷你馬拉松比賽在南濱路舉行,王老師和劉老師參加了比賽,圖中AB、OC分別表示王老師和劉老師前往終點所跑的路程S(km)隨時間t(min)變化的函數圖象,以下說法:①這是全長為5km的比賽;②王老師比劉老師早15分鐘到達終點;③王老師出發(fā)15分鐘時遇到劉老師;④王老師的平均速度為500/分鐘.其中正確的有( 。

A. ①②③ B. ①②④ C. ①③④ D. ②③④

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】如圖,在⊙O中,AB為直徑,D、E為圓上兩點,C為圓外一點,且∠E+∠C=90°.

(1)求證:BC為⊙O的切線.
(2)若sinA= ,BC=6,求⊙O的半徑.

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】如圖,四邊形ABCD的內角∠BAD、CDA的角平分線交于點E,ABC、BCD的角平分線交于點F

1)若∠F=70°,則∠ABC+BCD= ______ °E= ______ °;

2)探索∠E與∠F有怎樣的數量關系,并說明理由;

3)給四邊形ABCD添加一個條件,使得∠E=F,所添加的條件為______

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】如圖,AB=AC,AD=AE,BE、CE相交于點F,則圖中全等三角形共有( 。⿲Γ

A. 2 B. 3 C. 4 D. 5

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】如圖,直線y=5x+5交x軸于點A,交y軸于點C,過A,C兩點的二次函數y=ax2+4x+c的圖象交x軸于另一點B.

(1)求二次函數的表達式;
(2)連接BC,點N是線段BC上的動點,作ND⊥x軸交二次函數的圖象于點D,求線段ND長度的最大值;
(3)若點H為二次函數y=ax2+4x+c圖象的頂點,點M(4,m)是該二次函數圖象上一點,在x軸、y軸上分別找點F,E,使四邊形HEFM的周長最小,求出點F,E的坐標.
溫馨提示:在直角坐標系中,若點P,Q的坐標分別為P(x1 , y1),Q(x2 , y2),
當PQ平行x軸時,線段PQ的長度可由公式PQ=|x1﹣x2|求出;
當PQ平行y軸時,線段PQ的長度可由公式PQ=|y1﹣y2|求出.

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】如圖,在下列條件中,不能判定直線a與b平行的是(

A.∠1=∠2
B.∠2=∠3
C.∠3=∠5
D.∠3+∠4=180°

查看答案和解析>>

同步練習冊答案