當m=n+
2
3
,m2-2mn+n2=______.
∵m=n+
2
3

∴m-n=
2
3

∴m2-2mn+n2=(m-n)2
m=n+
2
3
,m-n=
2
3
,
所以m2-2mn+n2=(m-n)2=
4
9
練習冊系列答案
相關習題

科目:初中數(shù)學 來源: 題型:

當m=n+
23
,m2-2mn+n2=
 

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

(1)先化簡,再求值:(x+2-
5
x-2
x-3
x-2
,其中x=
5
-3

(2)若a=1-
2
,先化簡再求
a2-1
a2+a
+
a2-2a+1
a2-a
的值;
(3)已知a=
2
+1,b=
2
-1
,求a2-a2005b2006+b2的值;
(4)已知:實數(shù)a,b在數(shù)軸上的位置如圖所示,
精英家教網(wǎng)
化簡:
(a+1)2
+2
(b-1)2
-|a-b|;
(5)觀察下列各式及驗證過程:
N=2時有式①:
2
3
=
2+
2
3

N=3時有式②:
3
8
=
3+
3
8

式①驗證:
2
3
=
23
3
=
(23-2)+2
22-1
=
2(22-1)+2
22-1
=
2+
2
3

式②驗證:
3
8
=
33
8
=
(33-3)+3
32-1
=
3(32-1)+3
32-1
=
3+
3
8

①針對上述式①、式②的規(guī)律,請寫出n=4時變化的式子;
②請寫出滿足上述規(guī)律的用n(n為任意自然數(shù),且n≥2)表示的等式,并加以驗證.
(6)已知關于x的一元二次方程x2+(2m-1)+m2=0有兩個實數(shù)根x1和x2.    ①求實數(shù)m的取值范圍;②當x12-x22=0時,求m的值.

查看答案和解析>>

同步練習冊答案