【題目】已知頂點為P的拋物線C1的解析式為y=a(x-3)2(a≠0),且經(jīng)過點(0,1).

(1)a的值及拋物線C1的解析式;

(2)如圖,將拋物線C1向下平移h(h>0)個單位得到拋物線C2,過點K(0,m2)(m>0)作直線l平行于x,與兩拋物線從左到右分別相交于A,B,C,D四點,A,C兩點關(guān)于y軸對稱.

①點G在拋物線C1,m為何值時,四邊形APCG為平行四邊形?

②若拋物線C1的對稱軸與直線l交于點E,與拋物線C2交于點F.試探究:K點運動過程中,的值是否改變?若會,請說明理由;若不會,請求出這個值.

【答案】(1)y=(x-3)22)①當m=,四邊形APCG是平行四邊形②

【解析】

1)直接利用待定系數(shù)法求二次函數(shù)解析式得出即可;

2)首先得出GQK≌△POKASA),進而得出頂點G在拋物線C1上,得出2m2=-3-32,進而得出答案;

3)利用函數(shù)對稱性表示出A點坐標,再表示出KC,PF的長,進而得出其比值.

(1)∵拋物線C1過點(0,1),1=a(0-3)2,解得a=

∴拋物線C1的解析式為y=(x-3)2.

(2)①連接PG,∵點A,C關(guān)于y軸對稱,

∴點KAC的中點.

若四邊形APCG是平行四邊形,則必有點KPG的中點.

過點GGQy軸于點Q,

可得GQKPOK,

GQ=PO=3,KQ=OK=m2,OQ=2m2.

∴點G(-3,2m2).

∵頂點G在拋物線C1,2m2=(-3-3)2,

解得m=±,m>0,m=

∴當m=,四邊形APCG是平行四邊形.

②不會.在拋物線y=(x-3)2,y=m2,

解得x=3±3m,m>0,且點C在點B的右側(cè),

C(3+3m,m2),KC=3+3m.

∵點A,C關(guān)于y軸對稱,

A(-3-3m,m2).

∵拋物線C1向下平移h(h>0)個單位得到拋物線C2,∴拋物線C2的解析式為y=(x-3)2-h.

m2=(-3-3m-3)2-h,

解得h=4m+4,

PF=4+4m.

.

練習冊系列答案
相關(guān)習題

科目:初中數(shù)學 來源: 題型:

【題目】撫順某中學為了解八年級學生的體能狀況,從八年級學生中隨機抽取部分學生進行體能測試,測試結(jié)果分為A,B,CD四個等級.請根據(jù)兩幅統(tǒng)計圖中的信息回答下列問題:

1)本次抽樣調(diào)查共抽取了多少名學生?

2)求測試結(jié)果為C等級的學生數(shù),并補全條形圖;

3)若該中學八年級共有700名學生,請你估計該中學八年級學生中體能測試結(jié)果為D等級的學生有多少名?

4)若從體能為A等級的2名男生2名女生中隨機的抽取2名學生,做為該校培養(yǎng)運動員的重點對象,請用列表法或畫樹狀圖的方法求所抽取的兩人恰好都是男生的概率.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】《山西省新能源汽車產(chǎn)業(yè)2018年行動計劃》指出,2018年全省新能源汽車產(chǎn)能將達到30萬輛,按照十三五規(guī)劃,到2020年,全省新能源汽車產(chǎn)能將達到41萬輛,若設(shè)這兩年全省新能源汽車產(chǎn)能的平均增長率為,則根據(jù)題意可列出方程是()

A. B.

C. D.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,在平面直角坐標系中,等腰直角三角形OAA1的直角邊OAx軸上,點A1在第一象限,且OA=1,以點A1為直角頂點,OA1為一直角邊作等腰直角三角形OA1A2,再以點A2為直角頂點,OA2為直角邊作等腰直角三角形OA2A3依此規(guī)律,則點A2018的坐標是_____

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,將兩張長為5,寬為1的矩形紙條交叉,讓兩個矩形對角線交點重合,且使重疊部分成為一個菱形.當兩張紙條垂直時,菱形周長的最小值是4,把一個矩形繞兩個矩形重合的對角線交點旋轉(zhuǎn)一定角度,在旋轉(zhuǎn)過程中,得出所有重疊部分為菱形的四邊形中,周長的最大值是(  )

A. 8B. 10C. 10.4D. 12

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】濟南某中學在參加“創(chuàng)文明城,點贊泉城”書畫比賽中,楊老師從全校30個班中隨機抽取了4個班(用A,B,C,D表示),對征集到的作鼎的數(shù)量進行了分析統(tǒng)計,制作了兩幅不完整的統(tǒng)計圖.

請根據(jù)以上信息,回答下列問題:

(l)楊老師采用的調(diào)查方式是   (填“普查”或“抽樣調(diào)查”);

(2)請補充完整條形統(tǒng)計圖,并計算扇形統(tǒng)計圖中C班作品數(shù)量所對應(yīng)的圓心角度數(shù)   

(3)請估計全校共征集作品的什數(shù).

(4)如果全枝征集的作品中有5件獲得一等獎,其中有3名作者是男生,2名作者是女生,現(xiàn)要在獲得一樣等獎的作者中選取兩人參加表彰座談會,請你用列表或樹狀圖的方法,求恰好選取的兩名學生性別相同的概率.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖是一個用來盛爆米花的圓錐形紙杯,紙杯開口圓的直徑EF長為6 cm,母線OE(OF)長為9cm在母線OF上的點A處有一塊爆米花殘渣,且FA = 3cm在母線OE上的點B只螞蟻,且EB = 1cm這只螞蟻從點B處沿圓錐表面爬行到A點,則爬行的最短距離為 cm

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖1,拋物線ymx24mx+3mm0)與x軸交于A,B兩點(點B在點A右側(cè)).與y軸交點C,與直線lyx+1交于D、E兩點,

1)當m1時,連接BC,求∠OBC的度數(shù);

2)在(1)的條件下,連接DB、EB,是否存在拋物線在第四象限上一點P,使得SDBESDPE?若存在,求出此時P點坐標及PB的長度;若不存在,請說明理由;

3)若以DE為直徑的圓恰好與x軸相切,求此時m的值.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】在美化校園的活動中,某興趣小組想借助如圖所示的直角墻角(兩邊足夠長),用32m長的籬笆圍成一個矩形花園ABCD(籬笆只圍ABBC兩邊),設(shè)ABxm

(1)若花園的面積為252m2,求x的值;

(2)若在P處有一棵樹與墻CDAD的距離分別是17m6m,要將這棵樹圍在花園內(nèi)(含邊界,不考慮樹的粗細),求花園面積S的最大值.

查看答案和解析>>

同步練習冊答案