【題目】如圖,C為線段BD上一動點,分別過點B、D作AB⊥BD,ED⊥BD,連接AC、EC. 已知AB=2,DE=1,BD=8,設CD=x.
(1)用含x的代數式表示AC+CE的長;
(2)求AC+CE的值最;
(3)根據(2)中的規(guī)律和結論,請構圖求出代數式的最小值。
【答案】(1) ;(2) 當A、C、E三點共線時,AC+CE的值最小,最小值為;(3)13.
【解析】
(1)由于△ABC和△CDE都是直角三角形,故AC,CE可由勾股定理求得;
(2)若點C不在AE的連線上,根據三角形中任意兩邊之和>第三邊知,AC+CE>AE,故當A、C、E三點共線時,AC+CE的值最;
(3)由(1)(2)的結果可作BD=12,過點B作AB⊥BD,過點D作ED⊥BD,使AB=2,ED=3,連接AE交BD于點C,則AE的長即為代數式的最小值,然后構造矩形AFDB,Rt△AFE,利用直角三角形的性質可求得AE的值.
解:(1)由線段的和差,得
BC=(8-x).
由勾股定理,得
AC+CE== ;
(2)當A、C、E三點共線時,AC+CE的值最小,如圖:作EF⊥AB于F點.,
,
四邊形BDEF是矩形,
BF=DE=1,EF=BD=8,
AF=AB+BF=2+1=3,
AE== =,
∴最小值為;
(3)如下圖所示,作BD=12,過點B作AB⊥BD,過點D作ED⊥BD,使AB=2,ED=3,連接AE交BD于點C,設BC=x,則AE的長即為代數式的最小值.
過點A作AF⊥DE交ED的延長線于點F,得矩形ABDF,
則AB=DF=2,AF=BD=12,EF=ED+DF=3+2=5,
所以AE===13,
即的最小值為13.
故答案為:(1) ;(2) 當A、C、E三點共線時,AC+CE的值最小,最小值為;(3)13.
科目:初中數學 來源: 題型:
【題目】如圖,已知反比例函數y=的圖象與直線y=﹣x+b都經過點A(1,4),且該直線與x軸的交點為B.
(1)求反比例函數和直線的解析式;
(2)求△AOB的面積.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】某校組織同學到離校15千米的社會實踐基地開展活動.一部分同學騎自行車前往,另一部分同學在騎自行車的同學出發(fā)小時后,乘汽車沿相同路線行進,結果騎自行車的與乘汽車的同學同時到達目的地.已知汽車速度是自行車速度的3倍,求自行車的速度.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】“元旦”期間,某文具店購進 只兩種型號的文具進行銷售,其進價和售價如表:
型號 | 進價(元/只) | 售價(元/只) |
A型 | 10 | 12 |
B型 | 15 | 23 |
(1)該店用 元可以購進A,B兩種型號的文具各多少只?
(2)在()的條件下,若把所購進A,B兩種型號的文具全部銷售完,利潤率有沒有超過 ?請你說明理由.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】為了開展“陽光體育”活動,某校在大課間中開設了A:體操,B:跑操,C:舞蹈,D:健美操四項活動,為了解學生最喜歡哪一項活動,隨機抽取了部分學生進行調查,并將調查結果繪制成了如下兩幅不完整的統(tǒng)計圖,請根據統(tǒng)計圖回答下列問題:
(1)本次抽查的樣本容量是 ;
(2)請將統(tǒng)計圖2補充完整;
(3)統(tǒng)計圖1中D項目對應的扇形的圓心角是 度;
(4)已知該校共有學生3000人,請根據調查結果估計該校喜歡跑操的學生人數.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】為舉辦校園文化藝術節(jié),甲、乙兩班準備給合唱同學購買演出服裝(一人一套),兩班共92人(其中甲班比乙班人多,且甲班不到90人),下面是供貨商給出的演出服裝的價格表:
購買服裝的套數 | 1套至45套 | 46套至90套 | 91套以上 |
每套服裝的價格 | 60元 | 50元 | 40元 |
如果兩班單獨給每位同學購買一套服裝,那么一共應付5020元.
(1)甲、乙兩班聯合起來給每位同學購買一套服裝,比單獨購買可以節(jié)省多少錢?
(2)甲、乙兩班各有多少名同學?
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】在平面直角坐標系xOy中,點A的坐標為(0,m),且m≠0,點B的坐標為(n,0),將線段AB繞點B旋轉90°,分別得到線段B P1,B P2,稱點P1,P2為點A關于點B的“伴隨點”,圖1為點A關于點B的“伴隨點”的示意圖.
(1)已知點A(0,4),
①當點B的坐標分別為(1,0),(-2,0)時,點A關于點B的“伴隨點”的坐標分別為 ;
②點(x,y)是點A關于點B的“伴隨點”,直接寫出y與x之間的關系式;
(2)如圖2,點C的坐標為(-3,0),以C為圓心, 為半徑作圓,若在⊙C上存在點A關于點B的“伴隨點”,直接寫出點A的縱坐標m的取值范圍.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】已知A(8,0)及在第一象限的動點P(x,y),且x+y=10,設△OPA的面積為S
(1)求S關于x的函數表達式;
(2)求x的取值范圍;
(3)求S=12時P點坐標;
(4)畫出函數S的圖象.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,已知∠BOC=2∠AOC,OD平分∠AOB,∠BOE=90°,若∠AOC=40°,則∠DOE的度數等于( 。
A.20°B.25°C.30°D.30°
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com