【題目】如圖,拋物線y=x2+bx+c過點A(﹣4,﹣3),與y軸交于點B,對稱軸是x=﹣3,請解答下列問題:
(1)求拋物線的解析式.
(2)若和x軸平行的直線與拋物線交于C,D兩點,點C在對稱軸左側(cè),且CD=8,求△BCD的面積.
【答案】(1)y=x2+6x+5;(2)28
【解析】(1)由對稱軸公式可求出b值,再將點A的坐標及b值代入到拋物線中求出c,即可得到拋物線的解析;(2)通過C點坐標、對稱軸及點B的坐標求出CD及CD上的高即可求出△BCD的面積.
解:(1)把點A(﹣4,﹣3)代入y=x2+bx+c得:
16﹣4b+c=﹣3,
c﹣4b=﹣19,
∵對稱軸是x=﹣3,
∴﹣=﹣3,
∴b=6,
∴c=5,
∴拋物線的解析式是y=x2+6x+5
(2)∵CD∥x軸,
∴點C與點D關(guān)于x=﹣3對稱,
∵點C在對稱軸左側(cè),且CD=8,
∴點C的橫坐標為﹣7,
∴點C的縱坐標為(﹣7)2+6×(﹣7)+5=12,
∵點B的坐標為(0,5),
∴△BCD中CD邊上的高為12﹣5=7,
∴△BCD的面積=×8×7=28.
科目:初中數(shù)學 來源: 題型:
【題目】如圖,A,O,B在同一條直線上,∠AOD=∠BOD=∠EOC=90°,∠BOC∶∠AOE=3∶1.
(1)求∠COD的度數(shù).
(2)圖中有哪幾對角互為余角?
(3)圖中有哪幾對角互為補角?
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】根據(jù)某地實驗測得的數(shù)據(jù)表明,高度每增加1km,氣溫大約下降3℃,已知該地地面溫度為21℃.
(1)高空某處高度是6km,求此處的溫度是多少;
(2)高空某處溫度為﹣24℃,求此處的高度.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】一輛快車從甲地開往乙地,一輛慢車從乙地開往甲地,兩車同時出發(fā),設慢車離乙地為y1(km),快車離乙地的距離為y2(km),慢車行駛時間為x(h),兩車之間的距離為s(km),y1 ,y2與x的函數(shù)關(guān)系圖像如圖①所示,s與x的函數(shù)關(guān)系圖如圖②所示:
圖① 圖②
(1)圖中的a= ,b= .
(2)求s關(guān)于x的函數(shù)關(guān)系式.
(3)甲、乙兩地間有E、F兩個加油站,相距200km,若慢車進入加油站E時,快車恰好進入加油站F,請直接寫出加油站E到甲地的距離.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,在矩形ABCD中,E為CD的中點,H為BE上的一點, =3,連接CH并延長交AB于點G,連接GE并延長交AD的延長線于點F.
(1)求證: ;
(2)若∠CGF=90°,求的值.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,方格紙中每個小正方形的邊長都是1個單位長度,△ABC在平面直角坐標系中的位置如圖所示.
(1)將△ABC向上平移3個單位后,得到△A1B1C1,請畫出△A1B1C1,并直接寫出點A1的坐標.
(2)將△ABC繞點O順時針旋轉(zhuǎn)90°,請畫出旋轉(zhuǎn)后的△A2B2C2,并求點B所經(jīng)過的路徑長(結(jié)果保留π)
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】一元二次方程3x2+4x-2=0的根的情況是( )
A.有兩個相等的實數(shù)根
B.只有一個實數(shù)根
C.有兩個不相等的實數(shù)根
D.沒有實數(shù)根
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】已知:如圖1,直線與x軸、y軸分別交于點A、C兩點,點B的橫坐標為2.
圖1 圖2
(1)求A、C兩點的坐標和拋物線的函數(shù)關(guān)系式;
(2)點D是直線AC上方拋物線上任意一點,P為線段AC上一點,且S△PCD=2S△PAD ,求點P的坐標;
(3)如圖2,另有一條直線y=-x與直線AC交于點M,N為線段OA上一點,∠AMN=∠AOM.點Q為x軸負半軸上一點,且點Q到直線MN和直線MO的距離相等,求點Q的坐標.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com