已知:如圖一,拋物線y=ax2+bx+c與x軸正半軸交于A、B兩點(diǎn),與y軸交于點(diǎn)C,直線y=x-2經(jīng)過(guò)A、C兩點(diǎn),且AB=2.
(1)求拋物線的解析式;
(2)若直線DE平行于x軸并從C點(diǎn)開始以每秒1個(gè)單位的速度沿y軸正方向平移,且分別交y軸、線段BC于點(diǎn)E,D,同時(shí)動(dòng)點(diǎn)P從點(diǎn)B出發(fā),沿BO方向以每秒2個(gè)單位速度運(yùn)動(dòng),(如圖2);當(dāng)點(diǎn)P運(yùn)動(dòng)到原點(diǎn)O時(shí),直線DE與點(diǎn)P都停止運(yùn)動(dòng),連DP,若點(diǎn)P運(yùn)動(dòng)時(shí)間為t秒;設(shè)s=,當(dāng)t為何值時(shí),s有最小值,并求出最小值.
(3)在(2)的條件下,是否存在t的值,使以P、B、D為頂點(diǎn)的三角形與△ABC相似;若存在,求t的值;若不存在,請(qǐng)說(shuō)明理由.

【答案】分析:(1)首先根據(jù)直線AC的解析式確定點(diǎn)A、C的坐標(biāo),已知AB的長(zhǎng),進(jìn)一步能得到點(diǎn)B的坐標(biāo);然后由待定系數(shù)法確定拋物線的解析式.
(2)根據(jù)所給的s表達(dá)式,要解答該題就必須知道ED、OP的長(zhǎng);BP、CE長(zhǎng)易知,那么由OP=OB-BP求得OP長(zhǎng),由∠CED的三角函數(shù)值可得到ED的長(zhǎng),再代入s的表達(dá)式中可得到關(guān)于s、t的函數(shù)關(guān)系式,結(jié)合函數(shù)的性質(zhì)即可得到s的最小值.
(3)首先求出BP、BD的長(zhǎng),若以P、B、D為頂點(diǎn)的三角形與△ABC相似,已知的條件是公共角∠OBC,那么必須滿足的條件是夾公共角的兩組對(duì)應(yīng)邊成比例,分兩種情況討論即可.
解答:解:(1)由直線:y=x-2知:A(2,0)、C(0,-2);
∵AB=2,∴OB=OA+AB=4,即 B(4,0).
設(shè)拋物線的解析式為:y=a(x-2)(x-4),代入C(0,-2),得:
a(0-2)(0-4)=-2,解得 a=-
∴拋物線的解析式:y=-(x-2)(x-4)=-x2+x-2.

(2)在Rt△OBC中,OB=4,OC=2,則 tan∠OCB=2;
∵CE=t,∴DE=2t;
而 OP=OB-BP=4-2t;
∴s===(0<t<2),
∴當(dāng)t=1時(shí),s有最小值,且最小值為 1.

(3)在Rt△OBC中,OB=4,OC=2,則 BC=2
在Rt△CED中,CE=t,ED=2t,則 CD=t;
∴BD=BC-CD=2-t;
以P、B、D為頂點(diǎn)的三角形與△ABC相似,已知∠OBC=∠PBD,則有兩種情況:
=?=,解得 t=
=?=,解得 t=;
綜上,當(dāng)t=時(shí),以P、B、D為頂點(diǎn)的三角形與△ABC相似.
點(diǎn)評(píng):該題主要考查了函數(shù)解析式的確定以及相似三角形的判定和性質(zhì)等重點(diǎn)知識(shí);(2)題得到的函數(shù)與平常所見的二次函數(shù)有所不同,但只要把握住分式以及二次函數(shù)的性質(zhì)即可正確解出答案;(3)題中需要注意的是相似三角形的對(duì)應(yīng)邊并沒(méi)有明確,需要進(jìn)行分類討論.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

(2012•鄂州)已知:如圖一,拋物線y=ax2+bx+c與x軸正半軸交于A、B兩點(diǎn),與y軸交于點(diǎn)C,直線y=x-2經(jīng)過(guò)A、C兩點(diǎn),且AB=2.
(1)求拋物線的解析式;
(2)若直線DE平行于x軸并從C點(diǎn)開始以每秒1個(gè)單位的速度沿y軸正方向平移,且分別交y軸、線段BC于點(diǎn)E,D,同時(shí)動(dòng)點(diǎn)P從點(diǎn)B出發(fā),沿BO方向以每秒2個(gè)單位速度運(yùn)動(dòng),(如圖2);當(dāng)點(diǎn)P運(yùn)動(dòng)到原點(diǎn)O時(shí),直線DE與點(diǎn)P都停止運(yùn)動(dòng),連DP,若點(diǎn)P運(yùn)動(dòng)時(shí)間為t秒;設(shè)s=
ED+OPED•OP
,當(dāng)t為何值時(shí),s有最小值,并求出最小值.
(3)在(2)的條件下,是否存在t的值,使以P、B、D為頂點(diǎn)的三角形與△ABC相似;若存在,求t的值;若不存在,請(qǐng)說(shuō)明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源:2012年初中畢業(yè)升學(xué)考試(湖北鄂州卷)數(shù)學(xué)(帶解析) 題型:解答題

已知:如圖一,拋物線與x軸正半軸交于A、B兩點(diǎn),與y軸交于點(diǎn)C,直線經(jīng)過(guò)A、C兩點(diǎn),且AB=2.

(1)求拋物線的解析式;
(2)若直線DE平行于x軸并從C點(diǎn)開始以每秒1個(gè)單位的速度沿y軸正方向平移,且分別交y軸、線段BC于點(diǎn)E,D,同時(shí)動(dòng)點(diǎn)P從點(diǎn)B出發(fā),沿BO方向以每秒2個(gè)單位速度運(yùn)動(dòng),(如圖2);當(dāng)點(diǎn)P運(yùn)動(dòng)到原點(diǎn)O時(shí),直線DE與點(diǎn)P都停止運(yùn)動(dòng),連DP,若點(diǎn)P運(yùn)動(dòng)時(shí)間為t秒 ;設(shè),當(dāng)t 為何值時(shí),s有最小值,并求出最小值。
(3)在(2)的條件下,是否存在t的值,使以P、B、D為頂點(diǎn)的三角形與△ABC相似;若存在,求t的值;若不存在,請(qǐng)說(shuō)明理由。

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源:2012年初中畢業(yè)升學(xué)考試(湖北鄂州卷)數(shù)學(xué)(解析版) 題型:解答題

已知:如圖一,拋物線與x軸正半軸交于A、B兩點(diǎn),與y軸交于點(diǎn)C,直線經(jīng)過(guò)A、C兩點(diǎn),且AB=2.

(1)求拋物線的解析式;

(2)若直線DE平行于x軸并從C點(diǎn)開始以每秒1個(gè)單位的速度沿y軸正方向平移,且分別交y軸、線段BC于點(diǎn)E,D,同時(shí)動(dòng)點(diǎn)P從點(diǎn)B出發(fā),沿BO方向以每秒2個(gè)單位速度運(yùn)動(dòng),(如圖2);當(dāng)點(diǎn)P運(yùn)動(dòng)到原點(diǎn)O時(shí),直線DE與點(diǎn)P都停止運(yùn)動(dòng),連DP,若點(diǎn)P運(yùn)動(dòng)時(shí)間為t秒 ;設(shè),當(dāng)t 為何值時(shí),s有最小值,并求出最小值。

(3)在(2)的條件下,是否存在t的值,使以P、B、D為頂點(diǎn)的三角形與△ABC相似;若存在,求t的值;若不存在,請(qǐng)說(shuō)明理由。

 

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源:浙江省模擬題 題型:填空題

定義:若拋物線的頂點(diǎn)與x軸的兩個(gè)交點(diǎn)構(gòu)成的三角形是直角三角形,則稱這種拋物線為“美麗拋物線”。
已知,如圖一組拋物線的頂點(diǎn)B1(1,y1),B2(2,y2),B3(3,y3),…Bn(n,yn)(n是正整數(shù))依次是直線上的點(diǎn),這組拋物線與x軸正半軸的交點(diǎn)依次是:A1(x1,0),A2(x2,0),A3(x3,0),…An+1(xn+1,0)(n是正整數(shù)),設(shè)x1=a(0<a<1)。則當(dāng)a=(    )時(shí),這組拋物線中存在美麗拋物線。

查看答案和解析>>

同步練習(xí)冊(cè)答案