【題目】如圖,C點在EF上,,BC平分,且.下列結論:

AC平分;②;③;④.其中結論正確的個數(shù)有(

A. 1B. 2C. 3D. 4

【答案】D

【解析】

根據(jù)平行線的性質及角度的計算,等腰三角形的性質即可進行一一求解判斷.

根據(jù), BC平分,且可得∠1+BCD=90°,∠BCD=DCF,

又∠DCF+ECD=180°,∴∠1=ECD,故AC平分,①正確;

AC平分,∴∠1=ECA,

∠1,,正確;

∵EF∥AB,∴∠FCB=∠B,∴∠B=∠DCB,

∵∠1+∠DCB=90°,,正確;

∵EF∥AB∴∠ECA=∠CAD,∵∠1=∠ECA

∴∠1=∠CAD

∵∠CDB△ACD的一個外角,∴∠CAD=∠1+∠CAD=2∠1,正確;

故選D

練習冊系列答案
相關習題

科目:初中數(shù)學 來源: 題型:

【題目】問題情境:如圖1,,,求度數(shù).小明的思路是:過,如圖2,通過平行線性質來求.

1)按小明的思路,易求得的度數(shù)為_________;請說明理由;

問題遷移:

2)如圖3,,點在射線上運動,當點、兩點之間運動時,,,則、、之間有何數(shù)量關系?請說明理由;

3)在(2)的條件下,如果點、兩點外側運動時(點與點、、三點不重合),請你直接寫出、、間的數(shù)量關系.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,菱形ABCD中,對角線AC,BD相交于點O,不添加任何輔助線,要使四邊形ABCD是正方形,則需要添加一個條件是 . (填一個即可)

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,∠180°,∠2100°,∠C=∠D

1)判斷ACDF的位置關系,并說明理由;

2)若∠C比∠A20°,求∠F的度數(shù).

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,直線y=x+3與x軸交于點A,與y軸交于點B,拋物線y=﹣x2+bx+c經(jīng)過A、B兩點.
(1)求拋物線的解析式;
(2)點P為拋物線在第二象限內(nèi)一點,過點P作x軸的垂線,垂足為點M,與直線AB交于點C,過點P作x軸的平行線交拋物線于點Q,過點Q作x軸的垂線,垂足為點N,若點P在點Q左邊,設點P的橫坐標為m.
①當矩形PQNM的周長最大時,求△ACM的面積;
②在①的條件下,當矩形PMNQ的周長最大時,過直線AC上一點G作y軸的平行線交拋物線一點F,是否存在點F,使得以點P、C、G、F為頂點的四邊形是平行四邊形?若存在,請直接寫出點F的坐標;若不存在,請說明理由.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】閱讀與理解:

如圖1,直線,點Pa,b之間,M,N分別為a,b上的點,P,M,N三點不在同一直線上,PMa的央角為,PNb的夾角為,則

理由如下:

P點作直線,因為,所以(如果兩條直線都與第三條直線平行,那么這兩條直線也互相平行).所以,.(兩直線平行,內(nèi)錯角相等),所以,即

計算與說明:

已知:如圖2,ABCD交于點O

1.,求證:;

22.如圖3,已知,AE平分,DE平分

①若,,請你求出的度數(shù);

②請問:圖3中,有怎樣的數(shù)量關系?為什么?

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】已知的一條邊的長為5,另兩邊的長是關于的一元二次方程的兩個實數(shù)根.

1)求證:無論為何值,方程總有兩個不相等的實數(shù)根;

2)當為何值時,為直角三角形,并求出的周長.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖是某款籃球架的示意圖,已知底座BC=0.60米,底座BC與支架AC所成的角∠ACB=75°,支架AF的長為2.50米,籃板頂端F點到籃框D的距離FD=1.35米,籃板底部支架HE與支架AF所成的角∠FHE=60°,求籃框D到地面的距離(精確到0.01米)(參考數(shù)據(jù):cos75°≈0.26,sin75°≈0.97,tan75°≈3.73, ≈1.73)( )

A.3.04
B.3.05
C.3.06
D.4.40

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】已知∠AOB=90°,在∠AOB的平分線OM上有一點C,將一個三角板的直角頂點與C重合,它的兩條直角邊分別與OA,OB(或它們的反向延長線)相交于點D,E.
當三角板繞點C旋轉到CD與OA垂直時(如圖①),易證:OD+OE= OC;
當三角板繞點C旋轉到CD與OA不垂直時,即在圖②,圖③這兩種情況下,上述結論是否仍然成立?若成立,請給予證明;若不成立,線段OD,OE,OC之間又有怎樣的數(shù)量關系?請寫出你的猜想,不需證明.

查看答案和解析>>

同步練習冊答案