【題目】某中學(xué)采用隨機的方式對學(xué)生掌握安全知識的情況進(jìn)行測評,并按成績高低分成優(yōu)、良、中、差四個等級進(jìn)行統(tǒng)計,繪制了下面兩幅尚不完整的統(tǒng)計圖.請根據(jù)有關(guān)信息解答:
(1)接受測評的學(xué)生共有人,扇形統(tǒng)計圖中“優(yōu)”部分所對應(yīng)扇形的圓心角為°,并補全條形統(tǒng)計圖;
(2)若該校共有學(xué)生1200人,請估計該校對安全知識達(dá)到“良”程度的人數(shù);
(3)測評成績前五名的學(xué)生恰好3個女生和2個男生,現(xiàn)從中隨機抽取2人參加市安全知識競賽,請用樹狀圖或列表法求出抽到1個男生和1個女生的概率.
【答案】
(1)80,135
(2)解:該校對安全知識達(dá)到“良”程度的人數(shù)為:1200×=375(人),
答:估計該校對安全知識達(dá)到“良”程度的人數(shù)為375人.
(3)解:根據(jù)題意畫出樹狀圖如下:
∴所有等可能的結(jié)果為20種,其中抽到一男一女的等可能結(jié)果有12種,
∴抽到1個男生和1個女生的概率為:=.
【解析】解:(1)依題可得:接受測評的學(xué)生人數(shù)為:20÷25%=80(人),
∴“優(yōu)”程度所對應(yīng)扇形的圓心角為:×360°=135°,
∴達(dá)到“良”程度的人數(shù)為:80-30-20-5=25(人),
補全條形統(tǒng)計圖如下:
【考點精析】根據(jù)題目的已知條件,利用扇形統(tǒng)計圖和條形統(tǒng)計圖的相關(guān)知識可以得到問題的答案,需要掌握能清楚地表示出各部分在總體中所占的百分比.但是不能清楚地表示出每個項目的具體數(shù)目以及事物的變化情況;能清楚地表示出每個項目的具體數(shù)目,但是不能清楚地表示出各個部分在總體中所占的百分比以及事物的變化情況.
科目:初中數(shù)學(xué) 來源: 題型:
【題目】認(rèn)真閱讀下面關(guān)于三角形內(nèi)外角平分線所夾角的探究片段,完成所提出的問題.
(1)如圖1,在△ABC中,O是∠ABC與∠ACB的平分線BO和CO的交點,試證明∠BOC=90°+
(2)如圖2中,O是∠ABC與外角∠ACD的平分線BO和CO的交點,試分析∠BOC與∠A有怎樣的關(guān)系?請說明理由.
(3)如圖3中,O是外角∠DBC與外角∠ECB的平分線BO和CO的交點,則∠BOC與∠A有怎樣的關(guān)系?(只寫結(jié)論,不需證明)
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】(知識生成)我們已經(jīng)知道,通過計算幾何圖形的面積可以表示一些代數(shù)恒等式.例如圖1可以得到(a+b)2=a2+2ab+b2,基于此,請解答下列問題:
(1)根據(jù)圖2,寫出一個代數(shù)恒等式: .
(2)利用(1)中得到的結(jié)論,解決下面的問題:若a+b+c=10,ab+ac+bc=35,則a2+b2+c2= .
(3)小明同學(xué)用圖3中x張邊長為a的正方形,y張邊長為b的正方形,z張寬、長分別為a、b的長方形紙片拼出一個面積為(2a+b)(a+2b)長方形,則x+y+z= .
(知識遷移)(4)事實上,通過計算幾何圖形的體積也可以表示一些代數(shù)恒等式,圖4表示的是一個邊長為x的正方體挖去一個小長方體后重新拼成一個新長方體,請你根據(jù)圖4中圖形的變化關(guān)系,寫出一個代數(shù)恒等式: .
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,已知正方形ABCD的邊長為2,E是邊BC上的動點,BF⊥AE交CD于點F,垂足為點G,連接CG,下列說法:①AG>GE;②AE=BF;③點G運動的路徑長為π;④CG的最小值 ﹣1.其中正確的說法有( )個.
A.4
B.3
C.2
D.1
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】解決下面的問題
(一)如圖,大正方形是由兩個小正方形和兩個長方形拼成的.
(1)請你用兩個不同形式的代數(shù)式表示這個大正方形的面積;
代數(shù)式:
代數(shù)式:
(2)由可得到關(guān)于的等式:
(二)從邊長為的大正方形紙板中挖去一個邊長為的小正方形紙板后,將其裁成四個相同的等腰梯形(圖甲),然后拼成一個平行四邊形(圖乙). 那么通過計算兩個圖形陰影部分的面積,可以驗證成立的乘法公式是 (用字母表示)
(3)計算 (直接寫結(jié)果)
用上面的卡片,(數(shù)量自定)畫出一個圖形,來驗證上面的整式運算(要求圖中有長度和面積的標(biāo)記)
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】若二次函數(shù) y=ax2+bx+c(a<0) 的圖象經(jīng)過點(2,0),且其對稱軸為直線 x=1 ,則使函數(shù)值 y>0 成立的 x 的取值范圍是( )
A.x<4 或 x>2
B.4 ≤ x ≤ 2
C.x ≤ 4 或 x ≥ 2
D.4<x<2
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】在數(shù)學(xué)課上,王老師拿出一張如圖 1 所示的長方形 紙(對邊,四個角都是直角), 要求同學(xué)們用直尺和量角器在 AB 邊上找一點 E,使.
(1)甲同學(xué)的做法:在邊上任取一點,以 為頂點,以 為一邊,用量角器作 角,使另外一邊經(jīng)過點 C,則 即為所求.
(2)乙同學(xué)的做法:以為始邊,在長方形的內(nèi)部,利用量角器作,射線 與 交于點,則如圖 2 所示 即為所求.
你支持_______同學(xué)的做法,作圖依據(jù)是__________________________________.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com