一張正方形紙片ABCD,第一次對折,使BC與AD重合,得到折痕EF(如圖(a));第二次對折使DF與AE重合(如圖(b));第三次對折,沿對角線AO對折,使E與G重合,此時用剪刀沿GH剪掉△AGH,其中OH=OG,然后展開展平(如圖(c)).

(1)你得到了一個什么圖形?

(2)它是軸對稱圖形嗎?

(3)它是旋轉(zhuǎn)對稱圖形嗎?如是,請指出旋轉(zhuǎn)中心和旋轉(zhuǎn)角?

(4)它是中心對稱圖形嗎?

答案:
解析:

  (1)正八邊形

  (2)是軸對稱圖形

  (3)是旋轉(zhuǎn)對稱圖形,

  (4)是中心對稱圖形


練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

精英家教網(wǎng)如圖,在一張△ABC紙片中,∠C=90°,∠B=60°,DE是中位線,現(xiàn)把紙片沿中位線DE剪開,計劃拼出以下四個圖形:①鄰邊不等的矩形;②等腰梯形;③有兩個角為銳角的菱形;④正方形.那么以上圖形一定能被拼成的個數(shù)為( 。
A、1B、2C、3D、4

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

23、如圖①,將一張直角三角形紙片△ABC折疊,使點A與點C重合,這時DE為折痕,△CBE為等腰三角形;再繼續(xù)將紙片沿△CBE的對稱軸EF折疊,這時得到了兩個完全重合的矩形(其中一個是原直角三角形的內(nèi)接矩形,另一個是拼合成的無縫隙、無重疊的矩形),我們稱這樣兩個矩形為“疊加矩形”.
(1)如圖②,正方形網(wǎng)格中的△ABC能折疊成“疊加矩形”嗎?如果能,請在圖②中畫出折痕;
(2)如圖③,在正方形網(wǎng)格中,以給定的BC為一邊,畫出一個斜三角形ABC,使其頂點A在格點上,且△ABC折成的“疊加矩形”為正方形;
(3)若一個三角形所折成的“疊加矩形”為正方形,那么它必須滿足的條件是什么?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

如圖,將一張直角三角形紙片ABC沿中位線DE剪開后在平面上將△BDE繞著CB的中點D逆時針旋轉(zhuǎn)180°,點E到了點E′位置,則四邊形ACE′E的形狀是( 。

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

(1)數(shù)學(xué)課上,老師出了一道題,如圖①,Rt△ABC中,∠C=90°,AC=
12
AB
,求證:∠B=30°,請你完成證明過程.
(2)如圖②,四邊形ABCD是一張邊長為2的正方形紙片,E、F分別為AB、CD的中點,沿過點D的抓痕將紙片翻折,使點A落在EF上的點A′處,折痕交AE于點G,請運用(1)中的結(jié)論求∠ADG的度數(shù)和AG的長.
(3)若矩形紙片ABCD按如圖③所示的方式折疊,B、D兩點恰好重合于一點O(如圖④),當AB=6,求EF的長.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

如圖1,在長為44,寬為12的矩形PQRS中,將一張直角三角形紙片ABC和一張正方形紙片DEFG如圖放置,其中邊AB、DE在PQ上,邊EF在QR上,邊BC、DG在同一直線上,且Rt△ABC兩直角邊BC=6,AB=8,正方形DEFG的邊長為4.從初始時刻開始,三角形紙片ABC,沿AP方向以每秒1個單位長度的速度向左平移;同時正方形紙片DEFG,沿QR方向以每秒2個單位長度的速度向上平移,當邊GF落在SR上時,紙片DEFG立即沿RS方向以原速度向左平移,直至G點與S點重合時,兩張紙片同時停止移動.設(shè)平移時間為x秒.
(1)請?zhí)羁眨寒攛=2時,CD=
2
2
2
2
,DQ=
4
2
4
2
,此時CD+DQ
=
=
CQ(請?zhí)睢埃肌、?”、“>”);
(2)如圖2,當紙片DEFG沿QR方向平移時,連接CD、DQ和CQ,求平移過程中△CDQ的面積S與x的函數(shù)關(guān)系式,并寫出自變量x的取值范圍(這里規(guī)定線段的面積為零);
(3)如圖3,當紙片DEFG沿RS方向平移時,是否存在這樣的時刻x,使以A、C、D為頂點的三角形是等腰三角形?若存在,求出對應(yīng)x的值;若不存在,請說明理由.

查看答案和解析>>

同步練習(xí)冊答案