【題目】如圖,在平面直角坐標系中,拋物線y=﹣x2+bx+c與x軸交于B,C兩點,與y軸交于點A,直線y=﹣x+2經過A,C兩點,拋物線的對稱軸與x軸交于點D,直線MN與對稱軸交于點G,與拋物線交于M,N兩點(點N在對稱軸右側),且MN∥x軸,MN=7.
(1)求此拋物線的解析式.
(2)求點N的坐標.
(3)過點A的直線與拋物線交于點F,當tan∠FAC=時,求點F的坐標.
(4)過點D作直線AC的垂線,交AC于點H,交y軸于點K,連接CN,△AHK沿射線AC以每秒1個單位長度的速度移動,移動過程中△AHK與四邊形DGNC產生重疊,設重疊面積為S,移動時間為t(0≤t≤),請直接寫出S與t的函數關系式.
【答案】(1)y=﹣x2+x+2;(2)點N的坐標為(5,-3);(3)點F的坐標為:(3,2)或(,﹣);(4).
【解析】
(1)點A、C的坐標分別為(0,2)、(4,0),將點A、C坐標代入拋物線表達式即可求解;
(2)拋物線的對稱軸為:x=,點N的橫坐標為:,即可求解;
(3)分點F在直線AC下方、點F在直線AC的上方兩種情況,分別求解即可;
(4)分0≤t≤、當<t≤、<t≤三種情況,分別求解即可.
解:(1)直線y=﹣x+2經過A,C兩點,則點A、C的坐標分別為(0,2)、(4,0),
則c=2,拋物線表達式為:y=﹣x2+bx+2,
將點C坐標代入上式并解得:b=,
故拋物線的表達式為:y=﹣x2+x+2…①;
(2)拋物線的對稱軸為:x=,
點N的橫坐標為: ,
故點N的坐標為(5,-3);
(3)∵tan∠ACO==tan∠FAC=,
即∠ACO=∠FAC,
①當點F在直線AC下方時,
設直線AF交x軸于點R,
∵∠ACO=∠FAC,則AR=CR,
設點R(r,0),則r2+4=(r﹣4)2,解得:r=,
即點R的坐標為:(,0),
將點R、A的坐標代入一次函數表達式:y=mx+n得:,
解得:,
故直線AR的表達式為:y=﹣x+2…②,
聯(lián)立①②并解得:x=,故點F(,﹣);
②當點F在直線AC的上方時,
∵∠ACO=∠F′AC,∴AF′∥x軸,
則點F′(3,2);
綜上,點F的坐標為:(3,2)或(,﹣);
(4)如圖2,設∠ACO=α,則tanα=,則sinα=,cosα=;
①當0≤t≤時(左側圖),
設△AHK移動到△A′H′K′的位置時,直線H′K′分別交x軸于點T、交拋物線對稱軸于點S,
則∠DST=∠ACO=α,過點T作TL⊥KH,
則LT=HH′=t,∠LTD=∠ACO=α,
則DT=,DS=,
S=S△DST=DT×DS=;
②當<t≤時(右側圖),
同理可得:
S==DG×(GS′+DT′)=3+(+﹣)=;
③當<t≤時,同理可得S=;
綜上,S=.
科目:初中數學 來源: 題型:
【題目】小軒從如圖所示的二次函數y=ax2+bx+c(a≠0)的圖象中,觀察得出了下面五條信息:
①ab>0;②a+b+c<0;③b+2c>0;④a﹣2b+4c>0;⑤.
你認為其中正確信息的個數有
A.2個 B.3個 C.4個 D.5個
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖1,在矩形中,BC=3,動點從出發(fā),以每秒1個單位的速度,沿射線方向移動,作關于直線的對稱,設點的運動時間為
(1)若
①如圖2,當點B’落在AC上時,顯然△PCB’是直角三角形,求此時t的值
②是否存在異于圖2的時刻,使得△PCB’是直角三角形?若存在,請直接寫出所有符合題意的t的值?若不存在,請說明理由
(2)當P點不與C點重合時,若直線PB’與直線CD相交于點M,且當t<3時存在某一時刻有結論∠PAM=45°成立,試探究:對于t>3的任意時刻,結論∠PAM=45°是否總是成立?請說明理由.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,在△ABC中,∠ABC=80°,∠BAC=40°.
(1)尺規(guī)作圖作出AB的垂直平分線DE,分別與AC、AB交于點D、E.并連結BD;(保留作圖痕跡,不寫作法)
(2)證明:△ABC∽△BDC.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,反比例函數y=(x>0)的圖象與直線y=mx交于點C,直線l:y=4分別交兩函數圖象于點A(1,4)和點B,過點B作BD⊥l交反比例函數圖象于點 D.
(1)求反比例函數的解析式;
(2)當BD=2AB時,求點B的坐標;
(3)在(2)的條件下,直接寫出不等式>mx的解集.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】某學校為了解九年級的600名學生每天的自主學習情況,隨機抽查了九年級的部分學生,并調查他們每天自主學習的時間.根據調查結果,制作了兩副不完整的統(tǒng)計圖(圖1圖2),請根據統(tǒng)計圖中的信息回答下列問題:
(1)本次調查的學生人數是 人;
(2)圖2中角是 度;
(3)將圖1條形統(tǒng)計圖補充完整;
(4)估算該校九年級學生自主學習不少于1.5小時有多少人.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】下表記錄了甲、乙、丙、丁四名同學最近幾次數學考試成績的平均數與方差.根據表中數據,要從中選擇一名成績好且發(fā)揮穩(wěn)定的同學參加數學競賽,應該選擇__________(填“甲”, “乙”, “丙”, “丁”).
甲 | 乙 | 丙 | 丁 | |
平均數(分) | 92 | 95 | 95 | 92 |
方差 | 3.6 | 3.6 | 7.4 | 8.1 |
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,在△ABC中,D是AC邊上的中點,連結BD,把△BDC′沿BD翻折,得到△,DC與AB交于點E,連結,若AD=AC′=2,BD=3則點D到BC的距離為( )
A.B.C.D.
查看答案和解析>>
湖北省互聯(lián)網違法和不良信息舉報平臺 | 網上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com