已知:a2+a+1=0,則1+a+a2+…+a2001的值為________.

1
分析:首先將a+a2+…+a2001分解為含有因式a2+a+1的形式,再將a2+a+1的值代入1+a+a2+…+a2001求值.
解答:∵a2+a+1=0,
∴1+a+a2+…+a2001
=1+a×(1+a+a2)+a4×(1+a+a2)+…+a1993×(1+a+a2)+a1996×(1+a+a2)+a1999×(1+a+a2
=1+(1+a+a2)(a+a4+a7+…+a1993+a1996+a1999
=1+0
=1.
故答案為1.
點(diǎn)評:本題考查因式分解的應(yīng)用、代數(shù)式求值.解決本題的關(guān)鍵是將a+a2+…+a2001分解為含有因式a2+a+1的形式.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

17、已知A=a2+b2-c2,B=-4a2+2b2+3c2,且A+B+C=0,求C.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

已知,a2+3a-1=0,b4-3b2-1=0,且1-ab2≠0,則(
ab2+b2+1a
)5
的值為
 

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

已知(a2+b22+(a2+b2)-6=0,則a2+b2的值為( 。

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

已知A=a2-2ab+b2,B=-a2-3ab-b2,求:2A-3B.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

已知:
a
2
=
b
3
=
c
5
 且3a+2b-c=14,則a+b+c的值為
20
20

查看答案和解析>>

同步練習(xí)冊答案