【題目】如圖,已知BD是矩形ABCD的對角線.
(1)用直尺和圓規(guī)作線段BD的垂直平分線,分別交AD、BC于E、F(保留作圖痕跡,不寫作法和證明).
(2)連結(jié)BE,DF,問四邊形BEDF是什么四邊形?請說明理由.

【答案】
(1)解:如圖所示,EF為所求直線;


(2)解:四邊形BEDF為菱形,理由為:

證明:∵EF垂直平分BD,

∴BE=DE,∠DEF=∠BEF,

∵AD∥BC,

∴∠DEF=∠BFE,

∴∠BEF=∠BFE,

∴BE=BF,

∵BF=DF,

∴BE=ED=DF=BF,

∴四邊形BEDF為菱形


【解析】(1)分別以B、D為圓心,比BD的一半長為半徑畫弧,交于兩點(diǎn),確定出垂直平分線即可;(2)連接BE,DF,四邊形BEDF為菱形,理由為:由EF垂直平分BD,得到BE=DE,∠DEF=∠BEF,再由AD與BC平行,得到一對內(nèi)錯角相等,等量代換及等角對等邊得到BE=BF,再由BF=DF,等量代換得到四條邊相等,即可得證.
【考點(diǎn)精析】利用矩形的性質(zhì)對題目進(jìn)行判斷即可得到答案,需要熟知矩形的四個角都是直角,矩形的對角線相等.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,AB=12cm,點(diǎn)C是線段AB上的一點(diǎn),BC=2AC.動點(diǎn)P從點(diǎn)A出發(fā),以3cm/s的速度向右運(yùn)動,到達(dá)點(diǎn)B后立即返回,以3cm/s的速度向左運(yùn)動;動點(diǎn)Q從點(diǎn)C出發(fā),以1cm/s的速度向右運(yùn)動.設(shè)它們同時出發(fā),運(yùn)動時間為ts.當(dāng)點(diǎn)P與點(diǎn)Q第二次重合時,P、Q兩點(diǎn)停止運(yùn)動.

(1)AC=__cm,BC=__cm;

(2)當(dāng)t為何值時,AP=PQ;

(3)當(dāng)t為何值時,PQ=1cm.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】我國明代著名數(shù)學(xué)家程大位的《算法統(tǒng)宗》一書中記載了一些詩歌形式的算題其中有一個“百羊問題”甲趕群羊逐草茂,乙拽肥羊一只隨其后;戲問甲及一百否?甲云所說無差謬,若得這般一群湊再添半群小半群,得你一只來方湊.玄機(jī)奧妙誰猜透.題目的意思是甲趕了一群羊在草地上往前走乙牽了一只肥羊緊跟在甲的后面.乙問甲“你這群羊有一百只嗎?”甲說“如果再有這么一群,再加半群,又加四分之一群,再把你的一只湊進(jìn)來,才滿100只.”請問甲原來趕的羊一共有多少只?如果設(shè)甲原來趕的羊一共有,那么可列方程______________

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】△ABC中,∠C=90°,∠A=60°,AC=2cm.長為1cm的線段MN在△ABC的邊AB上沿AB方向

以1cm/s的速度向點(diǎn)B運(yùn)動(運(yùn)動前點(diǎn)M與點(diǎn)A重合).過M,N分別作AB的垂線交直角邊于P,Q兩點(diǎn),線段MN運(yùn)動的時間為ts.

(1)若△AMP的面積為y,寫出y與t的函數(shù)關(guān)系式(寫出自變量t的取值范圍);

(2)線段MN運(yùn)動過程中,四邊形MNQP有可能成為矩形嗎?若有可能,求出此時t的值;若不可能,說明理由;

(3)t為何值時,以C,P,Q為頂點(diǎn)的三角形與△ABC相似?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】計算下列各式:
(1) +( 2+(π﹣1)0
(2)(3﹣π)0+4× +|1﹣ |.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】一個多邊形的內(nèi)角和是720°,這個多邊形的邊數(shù)是( )
A.3
B.4
C.5
D.6

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】一次函數(shù)y=2x-5的圖象不經(jīng)過的象限是(

A. 第一象限 B. 第二象限 C. 第三象限 D. 第四象限

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】小紅同學(xué)要測量A、C兩地的距離,但A、C之間有一水池,不能直接測量,于是她在A、C同一水平面上選取了一點(diǎn)B,點(diǎn)B可直接到達(dá)A、C兩地.她測量得到AB=80米,BC=20米,∠ABC=120°.請你幫助小紅同學(xué)求出A、C兩點(diǎn)之間的距離.(參考數(shù)據(jù) ≈4.6)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖1,A,B分別在射線OAON上,且∠MON為鈍角,現(xiàn)以線段OA,OB為斜邊向∠MON的外側(cè)作等腰直角三角形,分別是OAPOBQ,點(diǎn)CD,E分別是OA,OBAB的中點(diǎn).

1)求證:PCE≌△EDQ;

2)延長PC,QD交于點(diǎn)R.如圖2,若∠MON=150°,求證:ABR為等邊三角形;

3如圖3,若ARB∽△PEQ,求∠MON大小.

查看答案和解析>>

同步練習(xí)冊答案