【題目】如圖,下列推理所注理由正確的是( 。

A.DEBC,∴∠1=∠C(同位角相等,兩直線平行)

B.∵∠2=∠3,∴DEBC(兩直線平行,內(nèi)錯角相等)

C.DEBC,∴∠2=∠3(兩直線平行,內(nèi)錯角相等)

D.∵∠DEC+C180°,∴DEBC(同旁內(nèi)角相等,兩直線平行)

【答案】C

【解析】

根據(jù)平行線的判定定理以及性質(zhì)逐項判斷即可.

解:A、∵DEBC,∴∠1=∠C(同位角相等,兩直線平行),應(yīng)為:兩直線平行,同位角相等,故錯誤;

B、∵∠2=∠3,∴DEBC(兩直線平行,內(nèi)錯角相等),應(yīng)為:內(nèi)錯角相等,兩直線平行,故錯誤;

C、∵DEBC,∴∠2=∠3(兩直線平行,內(nèi)錯角相等),正確;

D、∵∠DEC+C180°,∴DEBC(同旁內(nèi)角相等,兩直線平行),應(yīng)為:同旁內(nèi)角互補(bǔ),兩直線平行.

故選:C

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知 a b , a b 兩個數(shù)在數(shù)軸上對應(yīng)的點(diǎn)分別為點(diǎn) A 、點(diǎn) B ,求 A B 兩點(diǎn)之間的距離.

(探索)

小明利用絕對值的概念,結(jié)合數(shù)軸,進(jìn)行探索:

1)補(bǔ)全小明的探索

(應(yīng)用)

2)若點(diǎn)C 對應(yīng)的數(shù)c ,數(shù)軸上點(diǎn)C A、B 兩點(diǎn)的距離相等,求c .(用含ab 的代數(shù)式表示)

3)若點(diǎn) D對應(yīng)的數(shù) d ,數(shù)軸上點(diǎn) D A 的距離是點(diǎn) D B 的距離的nn 0 倍,請?zhí)剿?/span> n 的取值范圍與點(diǎn) D 個數(shù)的關(guān)系,并直接寫出a、b 、d、n 的關(guān)系.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】類比學(xué)習(xí):一動點(diǎn)沿著數(shù)軸向右平移3個單位,再向左平移個單位,相當(dāng)于向右平移1個單位.用實(shí)數(shù)加法表示為

若坐標(biāo)平面上的點(diǎn)作如下平移:沿軸方向平移的數(shù)量為(向右為正,向左為負(fù),平移個單位),沿軸方向平移的數(shù)量為(向上為正,向下為負(fù),平移個單位),則把有序數(shù)對{,}叫做這一平移的“平移量”;“平移量”{,}與“平移量”{}的加法運(yùn)算法則為

解決問題:(1)計算:{3,1}+{1,2};{12}+{3,1}

2動點(diǎn)P從坐標(biāo)原點(diǎn)O出發(fā),先按照“平移量”{3,1}平移到A,再按照“平移量”{1,2}平移到B;若先把動點(diǎn)P按照“平移量”{1,2}平移到C,再按照“平移量”{3,1}平移,最后的位置還是點(diǎn)B嗎?在圖中畫出四邊形OABC.

證明四邊形OABC是平行四邊形.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】10袋小麥稱重后記錄如下(單位:kg).88.8,91,91.5,89,91.291.3,88.9,91.2,91,91.1

(1)如果每袋小麥以90 kg為標(biāo)準(zhǔn),超過的千克數(shù)記作正數(shù),不足的千克數(shù)記作負(fù)數(shù),這10袋小麥總計超過多少千克或不足多少千克?

(2)10袋小麥一共多少千克?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】某中學(xué)七、八年級各選派10名選手參加知識競賽,計分采用10分制選手得分均為整數(shù),成績達(dá)到6分或6分以上為合格達(dá)到9分或10分為優(yōu)秀.這次競賽后,七、八年級兩支代表隊選手成績分布的條形統(tǒng)計圖和成績統(tǒng)計分析表如下,其中七年級代表隊得6分、10分選手人數(shù)分別為a,b

1請依據(jù)圖表中的數(shù)據(jù),a,b的值

2直接寫出表中的m= ,n=

3有人說七年級的合格率、優(yōu)秀率均高于八年級,所以七年級隊成績比八年級隊好,但也有人說八年級隊成績比七年級隊好請你給出兩條支持八年級隊成績好的理由

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在△ABC中,∠BAC90°,AD是高,BE是中線,CF是角平分線,CFADG,交BEH.下列結(jié)論:SABESBCE;AFG=∠AGFFAG2ACF;BHCH.其中所有正確結(jié)論的序號是

A.①②③④B.①②③C.②④D.①③

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知一組數(shù)據(jù)63,47,63,5,6,求:

1)這組數(shù)據(jù)的平均數(shù)、眾數(shù)、中位數(shù);

2)這組數(shù)據(jù)的方差和標(biāo)準(zhǔn)差.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】523、24日,蘭州市九年級學(xué)生進(jìn)行了中考體育測試,某校抽取了部分學(xué)生的一分鐘跳繩測試成績,將測試成績整理后作出如統(tǒng)計圖.甲同學(xué)計算出前兩組的頻率和是012,乙同學(xué)計算出第一組的頻率為0.04,丙同學(xué)計算出從左至右第二、三、四組的頻數(shù)比為41715.結(jié)合統(tǒng)計圖回答下列問題:

(1)這次共抽取了多少名學(xué)生的一分鐘跳繩測試成績?

(2)若跳繩次數(shù)不少于130次為優(yōu)秀,則這次測試成績的優(yōu)秀率是多少?

(3)如果這次測試成績中的中位數(shù)是120次,那么這次測試中,成績?yōu)?/span>120次的學(xué)生至少有多少人?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】閱讀下面材料并解決有關(guān)問題:

我們知道:|x|,現(xiàn)在我們可以用這一結(jié)論來化簡含有絕對值的代數(shù)式,如化簡代數(shù)式|x+1|+|x2|時,可令x+10x20,分別求得x=﹣1x2(稱﹣1,2分別為|x+1||x2|的零點(diǎn)值).在實(shí)數(shù)范圍內(nèi),零點(diǎn)值x=﹣1x2可將全體實(shí)數(shù)分成不重復(fù)且不遺漏的如下3種情況:①x<﹣1;②﹣1≤x2;③x≥2

從而化簡代數(shù)式|x+1|+|x2|可分以下3種情況:

①當(dāng)x<﹣1時,原式=﹣(x+1)﹣(x2)=﹣2x+1;

②當(dāng)﹣1≤x2時,原式=x+1﹣(x2)=3;

③當(dāng)x≥2時,原式=x+1+x22x1

綜上討論,原式=

通過以上閱讀,請你解決以下問題:

1)當(dāng)x2時,|x2|   ;

2)根據(jù)材料中的方法化簡代數(shù)式|x+2|+|x4|;(寫出解答過程)

3)直接寫出|x1|4|x+1|的最大值   

查看答案和解析>>

同步練習(xí)冊答案