某物流公司的快遞車和貨車每天沿同一公路往返于A、B兩地,快遞車比貨車多往返一趟.圖表示快遞車與貨車距離A地的路程y(單位:千米)與所用時間x(單位:時)的函數(shù)圖象.已知貨車比快遞車早1小時出發(fā),到達(dá)B地后用2小時裝卸貨物,然后按原路、原速返回,結(jié)果比快遞車最后一次返回A地晚1小時.
(1)兩車在途中相遇的次數(shù)為______次;(直接填入答案)
(2)求兩車最后一次相遇時,距離A地的路程和貨車從A地出發(fā)了幾小時.
(1)由圖象得:兩車在途中相遇的次數(shù)為4次.
故答案為:4;

(2)由題意得:
快遞車的速度為:400÷4=100,
貨車的速度為:400÷8=50,
∴200÷50=4,600÷100=6
∴E(6,200),C(7,200).
如圖,設(shè)直線EF的解析式為y=k1x+b1,
∵圖象過(10,0),(6,200),
200=6k1+b1
0=10k1+b1

∴k1=-50,b1=500,
∴y=-50x+500①.
設(shè)直線CD的解析式為y=k2x+b2,
∵圖象過(7,200),(9,0),
200=7k2+b2
0=9k2+b2

∴k1=-100,b1=900,
∴y=-100x+900②.
解由①,②組成的方程組得:
y=-50x+500
y=-100x+900
,
解得:
x=8
y=100
,
∴最后一次相遇時距離A地的路程為100km,貨車從A地出發(fā)了8小時.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源:不詳 題型:單選題

如圖,若直線PA的解析式為y=
2
3
x+b,且點(diǎn)P(4,2),PA=PB,則點(diǎn)B的坐標(biāo)是(  )
A.(5,0)B.(6,0)C.(7,0)D.(8,0)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:解答題

已知:在平面直角坐標(biāo)系中,點(diǎn)A(1,0),點(diǎn)B(4,0),點(diǎn)C在y軸正半軸上,且OB=2OC.
(1)試確定直線BC的解析式;
(2)在平面內(nèi)確定點(diǎn)M,使得以點(diǎn)M、A、B、C為頂點(diǎn)的四邊形是平行四邊形,請直接寫出點(diǎn)M的坐標(biāo).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:解答題

如圖1,已知直線l的解析式為y=
4
3
x+4
,它與x軸、y軸分別相交于A、B兩點(diǎn).點(diǎn)C從點(diǎn)O出發(fā)沿OA以每秒1個單位的速度向點(diǎn)A勻速運(yùn)動;點(diǎn)D從點(diǎn)A出發(fā)沿AB以每秒1個單位長的速度向點(diǎn)B勻速運(yùn)動,點(diǎn)C、D同時出發(fā),當(dāng)點(diǎn)C到達(dá)點(diǎn)A時同時停止運(yùn)動.伴隨著C、D的運(yùn)動,EF始終保持垂直平分CD,垂足為E,且EF交折線AB-BO-AO于點(diǎn)F.
(1)直接寫出A、B兩點(diǎn)的坐標(biāo);
(2)設(shè)點(diǎn)C、D的運(yùn)動時間是t秒(t>0).
①用含t的代數(shù)式分別表示線段AD和AC的長度;
②在點(diǎn)F運(yùn)動的過程中,四邊形BDEF能否成為直角梯形?若能,求t的值;若不能,請說明理由.(可利用備用圖解題)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:解答題

周華早起鍛煉,往返于家與體育場之間,離家的距離y(米)與時間x(分)的關(guān)系如圖所示.回答下列問題:
(1)填空:周華從體育場返回行走的行走速度時______米/分;
(2)劉明與周華同時出發(fā),按相同的路線前往體育場,劉明離周華家的距離y(米)與時間x(分)的關(guān)系式為y=kx+400,當(dāng)周華回到家時,劉明剛好到達(dá)體育場.
①直接在圖中畫出劉明離周華家的距離y(米)與時間x(分)的函數(shù)圖象;
②填空:周華與劉明在途中共相遇______次;
③求周華出發(fā)后經(jīng)過多少分鐘與劉明最后一次相遇.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:解答題

如圖,把兩個全等的Rt△AOB和Rt△ECD分別置于平面直角坐標(biāo)系xOy中,使點(diǎn)E與點(diǎn)B重合,直角邊OB、BC在y軸上.已知點(diǎn)D(4,2),過A、D兩點(diǎn)的直線交y軸于點(diǎn)F.若△ECD沿DA方向以每秒
2
個單位長度的速度勻速平移,設(shè)平移的時間為t(秒),記△ECD在平移過程中某時刻為△E′C′D′,E′D′與AB交于點(diǎn)M,與y軸交于點(diǎn)N,C′D′與AB交于點(diǎn)Q,與y軸交于點(diǎn)P(注:平移過程中,點(diǎn)D′始終在線段DA上,且不與點(diǎn)A重合).
(1)求直線AD的函數(shù)解析式;
(2)試探究在△ECD平移過程中,四邊形MNPQ的面積是否存在最大值?若存在,求出這個最大值及t的取值;若不存在,請說明理由;
(3)以MN為邊,在E′D′的下方作正方形MNRH,求正方形MNRH與坐標(biāo)軸有兩個公共點(diǎn)時t的取值范圍.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:解答題

如圖,已知點(diǎn)A(-12,0),B(3,0),點(diǎn)C在y軸的正半軸上,且∠ACB=90°.
(1)求點(diǎn)C的坐標(biāo);
(2)求Rt△ACB的角平分線CD所在直線l的解析式;
(3)在l上求出滿足S△PBC=
1
2
S△ABC的點(diǎn)P的坐標(biāo);
(4)已知點(diǎn)M在l上,在平面內(nèi)是否存在點(diǎn)N,使以O(shè)、C、M、N為頂點(diǎn)的四邊形是菱形?若存在,請直接寫出點(diǎn)N的坐標(biāo);若不存在.請說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:解答題

義烏市某飾品廠生產(chǎn)出一款新產(chǎn)品,上市20天全部銷售完,該廠銷售部對銷售情況進(jìn)行跟蹤記錄,并將記錄情況繪成圖象,日銷售量y(單位:件)與上市時間x(單位:天)的函數(shù)關(guān)系如圖1所示,飾品價格z(單位:元/件)與上市時間x(單位:天)的函數(shù)關(guān)系如圖2所示.

(1)觀察圖象,直接寫出日銷售量的最大值;
(2)求該廠飾品的價格z與上市時間x的函數(shù)解析式;
(3)試比較第8天與第12天的銷售金額哪天多?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:解答題

化工商店銷售某種新型化工原料,其市場指導(dǎo)價是每千克160元(化工商店的售價還可以在市場指導(dǎo)價的基礎(chǔ)上進(jìn)行浮動),這種原料的進(jìn)貨價是市場指導(dǎo)價的75%.
(1)為了擴(kuò)大銷售量,化工商店決定適當(dāng)調(diào)整價格,調(diào)整后的價格按八折銷售,仍可獲得實(shí)際售價的20%的利潤.求化工商店調(diào)整價格后的標(biāo)價是多少元?打折后的實(shí)際售價是多少元?
(2)化工商店為了解這種原料的月銷售量y(千克)與實(shí)際售價x(元/千克)之間的關(guān)系,每個月調(diào)整一次實(shí)際售價,試銷一段時間后,部門負(fù)責(zé)人把試銷情況列成下表:
實(shí)際售價x(元/千克)150160168180
月銷售量y(千克)500480464440
①請你在所給的平面直角坐標(biāo)系中,以實(shí)際售價x(元/千克)為橫坐標(biāo),月銷售量y(千克)為縱坐標(biāo)描出各點(diǎn),觀察這些點(diǎn)的發(fā)展趨勢,猜想y與x之間可能存在怎樣的函數(shù)關(guān)系;
②請你用所學(xué)過的函數(shù)知識確定一個滿足這些數(shù)據(jù)的y與x之間的函數(shù)表達(dá)式,并驗(yàn)證你在①中的猜想;
③若化工商店某月按同一實(shí)際售價共賣出這種原料450千克,請你求出化工商店這個月銷售這種原料的利潤是多少元?

查看答案和解析>>

同步練習(xí)冊答案