【題目】如圖,矩形ABCD中,AB=12,點E是AD上的一點,AE=6,BE的垂直平分線交BC的延長線于點F,連接EF交CD于點G.若G是CD的中點,則BC的長是__________.
【答案】10.5
【解析】
利用ASA定理證明△EDG≌△FCG,從而求得DE=CF,EG=GF=,根據矩形的性質,設BC=x,則DE=x-6,DG=6,BF=2x-6,根據垂直平分線的性質求得EG=,然后根據勾股定理列方程求解即可.
解:在矩形ABCD中,AD=BC,AB=CD=12,∠D=∠DCF=90°
∵G為CD中點,∴DG=CG
又∵∠EGD=∠FGC
∴△EDG≌△FCG
∴DE=CF,EG=GF=
設BC=x,則DE=AD-AE=BC-AE=x-6,DG=CG==6,BF=BC+CF=BC+DE=2x-6,
又∵BE的垂直平分線交BC的延長線于點F,
∴EG=GF=
∴在Rt△EDG中,
解得:x=10.5
則BC的長是10.5
故答案為:10.5.
科目:初中數(shù)學 來源: 題型:
【題目】如圖,在ABCD中,BC=6cm,點E從點D出發(fā)沿DA邊運動到點A,點F從點B出發(fā)沿BC邊向點C運動,點E的運動速度為2cm/s,點F的運動速度為lcm/s,它們同時出發(fā),設運動的時間為t秒,當t為何值時,EF∥AB.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】某商場購進一批單價為4元/件的日用品。若按每件5元的價格出售,每月能賣出3萬件;若按每件6元的價格銷售,每月能賣出2萬件;假定每月的銷售件數(shù)y(萬件)與價格x(元/件)之間滿足一次函數(shù)關系.
(1)試求y與x的函數(shù)關系式;
(2)當銷售價格定為多少時,才能使每月的利潤最大?每月的最大利潤是多少?
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,王老師站在湖邊度假村的景點A處,觀察到一只水鳥由岸邊D處飛向湖中小島C處,點A到DC所在水平面的距離AB是15米,觀測水鳥在點D和點C處時的俯角分別為53°和11°,求C、D兩點之間距離.(精確到0.1.參考數(shù)據sin53°≈0.80,cos53°≈0.60,tan53°≈1.33,sin11°≈0.19,cos11°≈0.98,tan11°≈0.19)
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,某飛機于空中探測某座山的高度,在點A處飛機的飛行高度是AF=3700米,從飛機上觀測山頂目標C的俯角是45°,飛機繼續(xù)以相同的高度飛行300米到B處,此時觀測目標C的俯角是50°,求這座山的高度CD.(參考數(shù)據:sin50°≈0.77,cos50°≈0.64,tan50°≈1.20).
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】國家規(guī)定“中小學生每天在校體育活動時間不低于1小時”.為此,某市就“每天在校體育活動時間”的問題隨機抽樣調查了321名初中學生.根據調查結果將學生每天在校體育活動時間t(小時)分成,,,四組,并繪制了統(tǒng)計圖(部分).
組:組:組:組:
請根據上述信息解答下列問題:
(1)組的人數(shù)是 ;
(2)本次調查數(shù)據的中位數(shù)落在 組內;
(3)若該市約有12840名初中學生,請你估算其中達到國家規(guī)定體育活動時間的人數(shù)大約有多少.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】在菱形ABCD中,∠BAD=60°
(1) 如圖1,點E為線段AB的中點,連接DE、CE.若AB=4,求線段EC的長
(2) 如圖2,M為線段AC上一點(不與A、C重合),以AM為邊向上構造等邊三角形AMN,線段MN與AD交于點G,連接NC、DM,Q為線段NC的中點,連接DQ、MQ,判斷DM與DQ的數(shù)量關系,并證明你的結論
(3) 在(2)的條件下,若AC=,請你直接寫出DM+CN的最小值
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】在△ABC中,AB=AC,∠BAC=α,點P是△ABC內一點,且.連接PB,試探究PA,PB,PC滿足的等量關系.
圖1 圖2
(1)當α=60°時,將△ABP繞點A逆時針旋轉60°得到,連接,如圖1所示.
由≌可以證得是等邊三角形,再由可得∠APC的大小為 度,進而得到是直角三角形,這樣可以得到PA,PB,PC滿足的等量關系為 ;
(2)如圖2,當α=120°時,請參考(1)中的方法,探究PA,PB,PC滿足的等量關系,并給出證明;
(3)PA,PB,PC滿足的等量關系為 .
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】在平面直角坐標系中,已知點A(0,2),B(4,0),C(4,3)三點.
(1)建立平面直角坐標系并描出A、B、C三點
(2)求△ABC的面積;
(3)如果在第二象限內有一點P(m,1),且四邊形ABOP的面積是△ABC的面積的兩倍;求滿足條件的P點坐標.
查看答案和解析>>
湖北省互聯(lián)網違法和不良信息舉報平臺 | 網上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com