【題目】為了增強學生的環(huán)保意識,某校團委組織了一次“環(huán)保知識”考試,考題共10題考試結束后,學校團委隨機抽查部分考生的考卷,對考生答題情況進行分析統(tǒng)計,發(fā)現(xiàn)所抽查的考卷中答對題量最少為6題,并且繪制了如下兩幅不完整的統(tǒng)計圖.請根據(jù)統(tǒng)計圖提供的信息解答以下問題:
(1)“答對10題”所對應扇形的心角為_____;
(2)通過計算補全條形統(tǒng)計圖;
(3)若該校共有2000名學生參加這次“環(huán)保知識”考試,請你估計該校答對不少于8題的學生人數(shù).
科目:初中數(shù)學 來源: 題型:
【題目】如圖①,已知Rt△ABC中,∠ACB=90°,AC=8,AB=10,點D是AC邊上一點(不與C重合),以AD為直徑作⊙O,過C作CE切⊙O于E,交AB于F.
(1)若⊙O半徑為2,求線段CE的長;
(2)若AF=BF,求⊙O的半徑;
(3)如圖②,若CE=CB,點B關于AC的對稱點為點G,試求G、E兩點之間的距離.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,直線與坐標軸交于A,B兩點,在射線AO上有一點P,當△APB是以AP為腰的等腰三角形時,點P的坐標是________________.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】公司年使用自主研發(fā)生產(chǎn)的“”系列甲、乙、丙三類芯片共萬塊,生產(chǎn)了萬部手機,其中乙類芯片的產(chǎn)量是甲類芯片的倍,丙類芯片的產(chǎn)量比甲、乙兩類芯片產(chǎn)量的和還多萬塊.這些“”芯片解決了該公司年生產(chǎn)的全部手機所需芯片的.
(1)求年甲類芯片的產(chǎn)量;
(2)公司計劃年生產(chǎn)的手機全部使用自主研發(fā)的“”系列芯片.從年起逐年擴大“”芯片的產(chǎn)量,年、年這兩年,甲類芯片每年的產(chǎn)量都比前一年增長一個相同的百分數(shù),乙類芯片的產(chǎn)量平均每年增長的百分數(shù)比小,丙類芯片的產(chǎn)量每年按相同的數(shù)量遞增.年到年,丙類芯片三年的總產(chǎn)量達到億塊.這樣,年的公司的手機產(chǎn)量比年全年的手機產(chǎn)量多,求丙類芯片年的產(chǎn)量及的值.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖①,在平面直角坐標系中,已知,四點,動點以每秒個單位長度的速度沿運動(不與點、點重合),設運動時間為(秒).
(1)求經(jīng)過、、三點的拋物線的解析式;
(2)點在()中的拋物線上,當為的中點時,若,求點的坐標;
(3)當在上運動時,如圖②.過點作軸,垂足為,,垂足為.設矩形與重疊部分的面積為,求與的函數(shù)關系式,并求出的最大值;
(4)點為軸上一點,直線與直線交于點,與軸交于點.是否存在點,使得為等腰三角形?若存在,直接寫出符合條件的所有點的坐標;若不存在,請說明理由.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖是由7個同樣大小的正方體擺成的幾何體.將正方體①移走后,所得幾何體( 。
A. 主視圖不變,左視圖不變
B. 左視圖改變,俯視圖改變
C. 主視圖改變,俯視圖改變
D. 俯視圖不變,左視圖改變
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】(1)問題發(fā)現(xiàn)
如圖1,△ACB和△DCE均為等腰直角三角形,∠ACB=90°,B,C,D在一條直線上.
填空:線段AD,BE之間的關系為 .
(2)拓展探究
如圖2,△ACB和△DCE均為等腰直角三角形,∠ACB=∠DCE=90°,請判斷AD,BE的關系,并說明理由.
(3)解決問題
如圖3,線段PA=3,點B是線段PA外一點,PB=5,連接AB,將AB繞點A逆時針旋轉(zhuǎn)90°得到線段AC,隨著點B的位置的變化,直接寫出PC的范圍.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,⊙O的弦AD∥BC,過點D的切線交BC的延長線于點E,AC∥DE交BD于點H,DO及延長線分別交AC、BC于點G、F.
(1)求證:DF垂直平分AC;
(2)求證:FC=CE;
(3)若弦AD=5cm,AC=8cm,求⊙O的半徑.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,在Rt△ABC中,∠A=90°.AB=8cm,AC=6cm,若動點D從B出發(fā),沿線段BA運動到點A為止(不考慮D與B,A重合的情況),運動速度為2cm/s,過點D作DE∥BC交AC于點E,連接BE,設動點D運動的時間為x(s),AE的長為y(cm).
(1)求y關于x的函數(shù)表達式,并寫出自變量x的取值范圍;
(2)當x為何值時,△BDE的面積S有最大值?最大值為多少?
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com