當銳角A>45°時,sinA的值( )
A.小于
B.大于
C.小于
D.大于
【答案】分析:根據(jù)45°角的正弦值,以及銳角的正弦值隨角度的增大的變化情況即可作出判斷.
解答:解:sin45°=,
∵銳角的正弦值隨角度的增大而增大,
∴當銳角A>45°時,sinA的值大于
故選B.
點評:本題考查了特殊角的三角函數(shù)值,以及正弦函數(shù)的增減性,正確理解增減性是關鍵.
練習冊系列答案
相關習題

科目:初中數(shù)學 來源: 題型:

有一根直尺的短邊長2cm,長邊長10cm,還有一塊銳角為45°的直角三角形紙板,它的斜邊長12cm.如圖1,將直尺的短邊DE放置與直角三角形紙板的斜邊AB重合,且點D與點A重合.將直尺沿AB方向平移(如圖2),設平移的長度為xcm(0≤x≤10),直尺和三角形紙板的重疊部分(圖中陰影部分)的面積為Scm2
(1)當x=0時(如圖1),S=
 
;當x=10時,S=
 
;
(2)當0<x≤4時(如圖2),求S關于x的函數(shù)關系式;
(3)當4<x<10時,求S關于x的函數(shù)關系式,并求出S的最大值(同學可在圖3、圖4中畫草圖).精英家教網(wǎng)精英家教網(wǎng)

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

精英家教網(wǎng)在銳角△ABC中,∠BAC=60°,BD、CE為高,F(xiàn)是BC的中點,連接DE、EF、FD.則以下結(jié)論中一定正確的個數(shù)有(  )
①EF=FD;
②AD:AB=AE:AC;
③△DEF是等邊三角形;
④BE+CD=BC;
⑤當∠ABC=45°時,BE=
2
DE.
A、2個B、3個C、4個D、5個

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

有一根直尺的短邊長2cm,長邊長10cm,還有一塊銳角為45°的直角三角形紙板,它的斜邊長12cm.如圖①,將直尺的短邊DE與直角三角形紙板的斜邊AB重合,且點D與點A重合; 將直尺沿AB方向平移(如圖②),設平移的長度為xcm( 0≤x≤10 ),直尺和三角形紙板的重疊部分(圖中陰影部分)的面積為Scm2
(1)當x=0時(如圖①),S=
 
;
(2)當0<x≤4時(如圖②),求S關于x的函數(shù)關系式;
(3)當4<x<6時,求S關于x的函數(shù)關系式;
(4)直接寫出S的最大值.
精英家教網(wǎng)

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

如圖,在銳角△ABC中,∠BAC=60°,BD、CE為高,F(xiàn)為BC的中點,連接DE、DF、EF,則結(jié)論:①B、E、D、C四點共圓;②AD•AC=AE•AB;③△DEF是等邊三角形;④當∠ABC=45°時,BE=
2
DE中,一定正確的有( 。

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

把兩塊全等的直角三角形ABC和DEF疊放在一起,使三角板DEF的銳角頂點D與三角板ABC的斜邊中點O重合,其中∠ABC=∠DEF=90°,∠C=∠F=45°,AB=DE=4,把三角板ABC固定不動,讓三角板DEF繞點O旋轉(zhuǎn),設射線DE與射線AB相交于點P,射線DF與線段BC相交于點Q.
(1)如圖1,當射線DF經(jīng)過點B,即點Q與點B重合時,易證△APD∽△CDQ.此時AP•CQ的值為
8
8
.將三角板DEF由圖1所示的位置繞點O沿逆時針方向旋轉(zhuǎn),設旋轉(zhuǎn)角為α.其中0°<α<90°,則AP•CQ的值是否會改變?
答:
不會
不會
.(填“會”或“不會”)此時AP•CQ的值為
8
8
.(不必說明理由)
(2)在(1)的條件下,設CQ=x,兩塊三角板重疊面積為y,求y與x的函數(shù)關系式.(圖2、圖3供解題用)
(3)在(1)的條件下,PQ能否與AC平行?若能,求出y的值;若不能,試說明理由.

查看答案和解析>>

同步練習冊答案