【題目】如圖,⊙O的直徑為AB,點C在圓周上(異于A,B),AD⊥CD.
(1)若BC=3,AB=5,求AC的值;
(2)若AC是∠DAB的平分線,求證:直線CD是⊙O的切線.

【答案】
(1)解:∵AB是⊙O直徑,C在⊙O上,

∴∠ACB=90°,

又∵BC=3,AB=5,

∴由勾股定理得AC=4


(2)證明:連接OC

∵AC是∠DAB的角平分線,

∴∠DAC=∠BAC,

又∵AD⊥DC,

∴∠ADC=∠ACB=90°,

∴△ADC∽△ACB,

∴∠DCA=∠CBA,

又∵OA=OC,

∴∠OAC=∠OCA,

∵∠OAC+∠OBC=90°,

∴∠OCA+∠ACD=∠OCD=90°,

∴DC是⊙O的切線.


【解析】(1)首先根據(jù)直徑所對的圓周角為直角得到直角三角形,然后利用勾股定理求得AC的長即可;(2)連接OC,證OC⊥CD即可;利用角平分線的性質(zhì)和等邊對等角,可證得∠OCA=∠CAD,即可得到OC∥AD,由于AD⊥CD,那么OC⊥CD,由此得證.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,已知點是反比例函數(shù)在第一象限圖像上的一個動點,連接,以 為長,為寬作矩形且點在第四象限,隨著點的運動,點也隨之運動,但點始終在反比例函數(shù)的圖像上,則的值為(

A. B. C. D.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】a、b互為相反數(shù),b、C互為倒數(shù),并且m的立方等于它本身

(1)+ac;

(2)a>1,且m<0,S=|2a-3b|-2|b-m|-|b+|,2a-S的值.

(3)m≠0,試討論:x為有理數(shù)時|x+m|-|x-m|是否存在最大值?若存在,求出這個最大值:若不存在,請說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在平面直角坐標(biāo)系中,一次函數(shù)y=-2x+1的圖象與y軸交于點A.

(1)若點A關(guān)于x軸的對稱點B在一次函數(shù)y=x+b的圖象上,求b的值,并在同一坐標(biāo)系中畫出該一次函數(shù)的圖象;

(2)求這兩個一次函數(shù)的圖象與y軸圍成的三角形的面積.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在正方形ABCD中,連接BD,點OBD的中點,若M、N是邊AD上的兩點,連接MO、NO,并分別延長交邊BC于兩點M′、N′,則圖中的全等三角形共有( 。

A. 2 B. 3 C. 4 D. 5

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在邊長為1個單位長度的小正方形組成的網(wǎng)格中,給出了格點△ABC和△DEF(頂點為網(wǎng)格線的交點),以及過格點的直線l

(1)將△ABC向右平移兩個單位長度,再向下平移兩個單位長度,畫出平移后的三角形.

(2)畫出△DEF關(guān)于直線l對稱的三角形.

(3)填空:∠C+∠E   

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,點C、E分別為△ABD的邊BD、AB上兩點,且AE=AD,CE=CD,D=70゜,ECD=150゜,求∠B的度數(shù).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,∠BADCAE=90°,ABADAEAC,點DCE上,AFCB,垂足為F.

(1)AC=10,求四邊形ABCD的面積;

(2)求證:CE=2AF.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】一個盒子里有標(biāo)號分別為1,2,3,4的四個球,這些球除標(biāo)號數(shù)字外都相同.
(1)從盒中隨機摸出一個小球,求摸到標(biāo)號數(shù)字為奇數(shù)的球的概率;
(2)甲、乙兩人用這六個小球玩摸球游戲,規(guī)則是:甲從盒中隨機摸出一個小球,記下標(biāo)號數(shù)字后放回盒里,充分搖勻后,乙再從盒中隨機摸出一個小球,并記下標(biāo)號數(shù)字.若兩次摸到球的標(biāo)號數(shù)字同為奇數(shù)或同為偶數(shù),則判甲贏;若兩次摸到球的標(biāo)號數(shù)字為一奇一偶,則判乙贏.請用列表法或畫樹狀圖的方法說明這個游戲?qū)住⒁覂扇耸欠窆剑?/span>

查看答案和解析>>

同步練習(xí)冊答案