已知拋物線y=-x2+bx+c與x軸的兩個交點分別為A(x1,0),B(x2,0)(A在B的左邊),且x1+x2=4.
(1)求b的值及c的取值范圍;
(2)如果AB=2,求拋物線的解析式;
(3)設(shè)此拋物線與y軸的交點為C,頂點為D,對稱軸與x軸的交點為E,問是否存在這樣的拋物線,使△AOC≌BED全等,如果存在,求出拋物線的解析式;如果不存在,請說明理由.
(1)由已知得:x1、x2是方程-x2+bx+c=0的兩根,
∴△=b2-4•(-1)•c>0,x1+x2=b,
又x1+x2=4,
∴b=4,c>-4;

(2)由(1)可得y=-x2+4x+c,x1+x2=4,x1•x2=-c,
而AB=|x1-x2|=2,
∴(x1-x22=4,
即(x1+x22-4x1x2=4,16+4c=4,
解得c=-3,
∴拋物線解析式為y=-x2+4x-3;

(3)存在;由(1)可得y=-x2+4x+c,
∴C(0,c),D(2,c+4);
當OC=DE時,|c|=c+4,
解得c=-2,
當OC=BE時,AB=2OC,
即|x1-x2|=2|c|,
∴(x1-x22=4c2;16+4c=4c2
解得c=
1+
17
2
1-
17
2

滿足題意的拋物線解析式為:y=-x2+4x+
1+
17
2
,y=-x2+4x+
1-
17
2
練習冊系列答案
相關(guān)習題

科目:初中數(shù)學 來源:不詳 題型:解答題

如圖,已知二次函數(shù)的頂點坐標為(2,0),直線y=x+2與該二次函數(shù)的圖象交于A,B兩點,其中A點在y軸上,
(I)求此二次函數(shù)的解析式.
(II)P為線段AB上一點(A,B兩端點除外),過P點作x軸的垂線PC與(I)中的二此函數(shù)的圖象交于Q點,設(shè)線段PQ的長為m,P點的橫坐標為x,求出函數(shù)m與自變量x之間的函數(shù)關(guān)系式,并求出自變量x的取值范圍.
(III)線段AB上是否存在一點,使(II)中的線段PQ的長等于5?若存在,求出P點的坐標;若不存在,請說明理由.

查看答案和解析>>

科目:初中數(shù)學 來源:不詳 題型:解答題

如圖1,已知直線y=
2
5
x+2與x軸交于點A,交y軸于C、拋物線y=ax2+4ax+b經(jīng)過A、C兩點,拋物線交x軸于另一點B.
(1)求拋物線的解析式;
(2)點Q在拋物線上,且有△AQC和△BQC面積相等,求點Q的坐標;
(3)如圖2,點P為△AOC外接圓上
ACO
的中點,直線PC交x軸于D,∠EDF=∠ACO.當∠EDF繞D旋轉(zhuǎn)時,DE交AC于M,DF交y軸負半軸于N、問CN-CM的值是否發(fā)生變化?若不變,求出其值;若變化,求出變化范圍.

查看答案和解析>>

科目:初中數(shù)學 來源:不詳 題型:單選題

如圖所示是一個拋物線形橋拱的示意圖,在所給出的平面直角坐標系中,當水位在AB位置時,水面寬度為10m,此時水面到橋拱的距離是4m,則拋物線的函數(shù)關(guān)系式為( 。
A.y=
25
4
x2
B.y=-
25
4
x2
C.y=-
4
25
x2
D.y=
4
25
x2

查看答案和解析>>

科目:初中數(shù)學 來源:不詳 題型:解答題

如圖,已知二次函數(shù)y=-x2+bx+c的圖象與x軸交于點A、B,與y軸交于點C,其頂點為D,且直線DC的解析式為y=x+3.
(1)求二次函數(shù)的解析式;
(2)求△ABC外接圓的半徑及外心的坐標;
(3)若點P是第一象限內(nèi)拋物線上一動點,求四邊形ACPB的面積最大值.

查看答案和解析>>

科目:初中數(shù)學 來源:不詳 題型:填空題

如圖,點A,B,M的坐標分別為(1,4)、(4,4)和(-1,0),拋物線y=ax2+bx+c的頂點在線段AB(包括線段端點)上,與x軸交于C、D兩點,點C在線段OM上(包括線段端點),則點D的橫坐標m的取值范圍是______.

查看答案和解析>>

科目:初中數(shù)學 來源:不詳 題型:解答題

已知:如圖,四邊形ABCD是等腰梯形,其中ADBC,AD=2,BC=4,AB=DC=2,點M從點B開始,以每秒1個單位的速度向點C運動;點N從點D開始,沿D→A→B方向,以每秒1個單位的速度向點B運動.若點M、N同時開始運動,其中一點到達終點,另一點也停止運動,運動時間為t(t>0).過點N作NP⊥BC與P,交BD于點Q.
(1)點D到BC的距離為______;
(2)求出t為何值時,QMAB;
(3)設(shè)△BMQ的面積為S,求S與t的函數(shù)關(guān)系式;
(4)求出t為何值時,△BMQ為直角三角形.

查看答案和解析>>

科目:初中數(shù)學 來源:不詳 題型:解答題

四邊形OABC是等腰梯形,OABC.在建立如圖的平面直角坐標系中,A(4,0),B(3,2),點M從O點以每秒2個單位的速度向終點A運動;同時點N從B點出發(fā)以每秒1個單位的速度向終點C運動,過點N作NP垂直于x軸于P點連接AC交NP于Q,連接MQ.
(1)寫出C點的坐標;
(2)若動點N運動t秒,求Q點的坐標;(用含t的式子表示)
(3)其△AMQ的面積S與時間t的函數(shù)關(guān)系式,并寫出自變量t的取值范圍;
(4)當t取何值時,△AMQ的面積最大;
(5)當t為何值時,△AMQ為等腰三角形.

查看答案和解析>>

科目:初中數(shù)學 來源:不詳 題型:解答題

已知:如圖,拋物線y=ax2+bx+c經(jīng)過A(1,0)、B(5,0)、C(0,5)三點.
(1)求拋物線的函數(shù)關(guān)系式;
(2)若過點C的直線y=kx+b與拋物線相交于點E(4,m),請求出△CBE的面積S的值;
(3)寫出二次函數(shù)值大于一次函數(shù)值的x的取值范圍;
(4)在拋物線上是否存在點P使得△ABP為等腰三角形?若存在,請指出一共有幾個滿足條件的點P,并求出其中一個點的坐標;若不存在這樣的點P,請說明理由.

查看答案和解析>>

同步練習冊答案