如圖,平行于y軸的直尺(一部分)與雙曲線(x>0)交于點A、C,與x軸交于點B、D,連接AC.點A、B的刻度分別為5、2(單位:cm),直尺的寬度為2cm,OB=2cm.
(1)A點坐標(biāo)為______;
(2)求k的值;
(3)求梯形ABDC的面積.

【答案】分析:(1)已知了OB、AB的長,即可確定點A的坐標(biāo).
(2)將A點坐標(biāo)代入反比例函數(shù)解析式中即可確定k的值.
(3)已知OB及直尺的寬,即可確定點C的橫坐標(biāo),根據(jù)反比例函數(shù)的解析式可得到點C的坐標(biāo);進(jìn)而可根據(jù)A、C坐標(biāo),得到AB、BD、CD的長,再根據(jù)梯形的面積公式求解即可.
解答:解:(1)由直尺的讀數(shù)知:AB=3cm,又OB=2cm;
∴A(2,3).(3分)

(2)將A點坐標(biāo)代入反比例函數(shù)解析式中,得:
k=xy=2×3=6;
故k=6.(5分)

(3)易知OD=4cm,即C點橫坐標(biāo)為4,代入反比例函數(shù)解析式可得:C(4,1.5)(7分),
∴AB=3,CD=1.5,BD=2;
S梯形=(AB+CD)•BD=×(3+1.5)×2=4.5;
即梯形的面積4.5cm2(10分).
點評:此題主要考查了反比例函數(shù)解析式的確定以及梯形面積的計算方法,難度不大.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

已知,如圖1,在平面直角坐標(biāo)系內(nèi),直線l1:y=-x+4與坐標(biāo)軸分別相交于點A、B,與直線l2y=
13
x
相交于點C.
(1)求點C的坐標(biāo);
(2)如圖1,平行于y軸的直線x=1交直線l1于點E,交直線l2于點D,平行于y軸的直x=a交直線l1于點M,交直線l2于點N,若MN=2ED,求a的值;
(3)如圖2,點P是第四象限內(nèi)一點,且∠BPO=135°,連接AP,探究AP與BP之間的位置關(guān)系,并證明你的結(jié)論.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:解答題

已知,如圖1,在平面直角坐標(biāo)系內(nèi),直線l1:y=-x+4與坐標(biāo)軸分別相交于點A、B,與直線l2數(shù)學(xué)公式相交于點C.
(1)求點C的坐標(biāo);
(2)如圖1,平行于y軸的直線x=1交直線l1于點E,交直線l2于點D,平行于y軸的直x=a交直線l1于點M,交直線l2于點N,若MN=2ED,求a的值;
(3)如圖2,點P是第四象限內(nèi)一點,且∠BPO=135°,連接AP,探究AP與BP之間的位置關(guān)系,并證明你的結(jié)論.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:2012屆重慶萬州區(qū)巖口復(fù)興學(xué)校九年級下第一次月考數(shù)學(xué)試卷(帶解析) 題型:解答題

已知:直角梯形AOBC在平面直角坐標(biāo)系中的位置如圖,若AC∥OB,OC平分∠AOB,CB⊥x軸于B,點A坐標(biāo)為(3 ,4). 點P從原點O開始以2個單位/秒速度沿x軸正向運(yùn)動 ;同時,一條平行于x軸的直線從AC開始以1個單位/秒速度豎直向下運(yùn)動 ,交OA于點D,交OC于點M,交BC于點E. 當(dāng)點P到達(dá)點B時,直線也隨即停止運(yùn)動.

(1)求出點C的坐標(biāo);
(2)在這一運(yùn)動過程中, 四邊形OPEM是什么四邊形?請說明理由。若
用y表示四邊形OPEM的面積 ,直接寫出y關(guān)于t的函數(shù)關(guān)系式及t的
范圍;并求出當(dāng)四邊形OPEM的面積y的最大值?
(3)在整個運(yùn)動過程中,是否存在某個t值,使⊿MPB為等腰三角形?
若有,請求出所有滿足要求的t值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:2013-2014學(xué)年江蘇省揚(yáng)州市邗江區(qū)九年級上學(xué)期期末考試數(shù)學(xué)試卷(解析版) 題型:解答題

如圖,拋物線與x軸交于點A(—2,0),交y軸于點B(0,).直過點A與y軸交于點C,與拋物線的另一個交點是D.

(1)求拋物線與直線的解析式;

(2)設(shè)點P是直線AD下方的拋物線上一動點(不與點A、D重合),過點P作 y軸的平行線,交直線AD于點M,作DE⊥y軸于點E.探究:是否存在這樣的點P,使四邊形PMEC是平行四邊形?若存在請求出點P的坐標(biāo);若不存在,請說明理由;

(3)在(2)的條件下,作PN⊥AD于點N,設(shè)△PMN的周長為m,點P的橫坐標(biāo)為x,求m與x的函數(shù)關(guān)系式,并求出m的最大值.

 

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:2011-2012學(xué)年重慶萬州區(qū)巖口復(fù)興學(xué)校九年級下第一次月考數(shù)學(xué)試卷(解析版) 題型:解答題

已知:直角梯形AOBC在平面直角坐標(biāo)系中的位置如圖,若AC∥OB,OC平分∠AOB,CB⊥x軸于B,點A坐標(biāo)為(3 ,4). 點P從原點O開始以2個單位/秒速度沿x軸正向運(yùn)動 ;同時,一條平行于x軸的直線從AC開始以1個單位/秒速度豎直向下運(yùn)動 ,交OA于點D,交OC于點M,交BC于點E. 當(dāng)點P到達(dá)點B時,直線也隨即停止運(yùn)動.

(1)求出點C的坐標(biāo);

(2)在這一運(yùn)動過程中, 四邊形OPEM是什么四邊形?請說明理由。若

用y表示四邊形OPEM的面積 ,直接寫出y關(guān)于t的函數(shù)關(guān)系式及t的

范圍;并求出當(dāng)四邊形OPEM的面積y的最大值?

(3)在整個運(yùn)動過程中,是否存在某個t值,使⊿MPB為等腰三角形?

若有,請求出所有滿足要求的t值.

 

查看答案和解析>>

同步練習(xí)冊答案