B
分析:過點D作DE∥AB,則將等腰梯形分為平行四邊形ABED和等腰三角形DEC,則EC=2AD,根據(jù)三線合一性質(zhì)可得DF=FC,從而可得到∠C的度數(shù).
解答:
解:如圖,梯形ABCD中,AD∥BC,DF⊥BC,AB=CD,BC=3AD,AD=DF
過點D作DE∥AB,則四邊形ADEB是平行四邊形
∴DE=CD=AB,AD=BE,根據(jù)等腰三角形中三線合一的性質(zhì)知,點F是EC的中點,
有EF=FC,
∵BC=3AD,
∴EC=2AD,
∴EF=DF=FC,
∴△FCD是等腰直角三角形,
∴∠C=45°.
∵∠C+∠ADC=180°,
∴∠ADC=135°,即它的鈍角是135°
故選B.
點評:本題考查學(xué)生對等腰梯形的性質(zhì)及等腰三角形的性質(zhì)的理解及運用,等腰梯形中作輔助線的方法.