【題目】已知:如圖,在四邊形ABCD中,AD∥BC,點E為CD邊上一點,AE與BE分別為∠DAB和∠CBA的平分線.
(1)作線段AB的垂直平分線交AB于點O,并以AB為直徑作⊙O(要求:尺規(guī)作圖,保留作圖痕跡,不寫作法);
(2)在(1)的條件下,⊙O交邊AD于點F,連接BF,交AE于點G,若AE=4,sin∠AGF=,求⊙O的半徑.
【答案】(1)作圖見解析;(2)⊙O的半徑為.
【解析】
(1)作出相應的圖形,如圖所示;
(2)由平行四邊形的對邊平行得到AD與BC平行,可得同旁內角互補,再由AE與BE為角平分線,可得出AE與BE垂直,利用直徑所對的圓周角為直角,得到AF與FB垂直,可得出兩銳角互余,根據(jù)角平分線性質及等量代換得到∠AGF=∠AEB,根據(jù)sin∠AGF的值,確定出sin∠AEB的值,求出AB的長,即可確定出圓的半徑.
解:(1)作出相應的圖形,如圖所示(去掉線段BF即為所求).
(2)∵AD∥BC,
∴∠DAB+∠CBA=180°.
∵AE與BE分別為∠DAB與∠CBA的平分線,
∴∠EAB+∠EBA=90°,
∴∠AEB=90°.
∵AB為⊙O的直徑,點F在⊙O上,
∴∠AFB=90°,∴∠FAG+∠FGA=90°.
∵AE平分∠DAB,
∴∠FAG=∠EAB,∴∠AGF=∠ABE,
∴sin∠ABE=sin∠AGF==.
∵AE=4,∴AB=5,
∴⊙O的半徑為.
科目:初中數(shù)學 來源: 題型:
【題目】已知:如圖,點P在線段AB外,且PA=PB,求證:點P在線段AB的垂直平分線上,在證明該結論時,需添加輔助線,則作法不正確的是( 。
A. 作∠APB的平分線PC交AB于點C
B. 過點P作PC⊥AB于點C且AC=BC
C. 取AB中點C,連接PC
D. 過點P作PC⊥AB,垂足為C
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖1,兩個不全等的等腰直角三角形和疊放在一起,并且有公共的直角頂點.
(1)在圖1中,你發(fā)現(xiàn)線段的數(shù)量關系是______.直線相交成_____度角.
(2)將圖1中繞點順時針旋轉90°,連接得到圖2,這時(1)中的兩個結論是否成立?請作出判斷說明理由.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】為了推動我縣“三進校園”活動的廣泛開展,引導學生走向操場,走到陽光下,積極參加體育鍛煉,學校準備購買一批運動鞋供學生借用,現(xiàn)從各年級隨機抽取了部分學生的鞋號,繪制了如下的統(tǒng)計圖①和圖②,請根據(jù)相關信息,解答下列問題:
(1)本次接受隨機抽樣調查的學生人數(shù)為 ,圖①中的值為 ;
(2)本次調查獲取的樣本數(shù)據(jù)的眾數(shù)為 ,中位數(shù)為 ;
(3)根據(jù)樣本數(shù)據(jù),若學校計劃購買雙運動鞋,建議購買號運動鞋 雙.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】在ABCD中,∠BAD的平分線交直線BC于點E,交直線DC于點F.
(1)在圖1中證明CE=CF;
(2)若∠ABC=90°,G是EF的中點(如圖2),直接寫出∠BDG的度數(shù);
(3)若∠ABC=120°,F(xiàn)G∥CE,F(xiàn)G=CE,分別連接DB、DG(如圖3),求∠BDG的度數(shù).
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,點A,B在雙曲線y=(x>0)上,點C在雙曲線y=(x>0)上,若AC∥y軸,BC∥x軸,且AC=BC,則AB等于( 。
A. B. 2 C. 4 D. 3
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,在矩形OABC中,點O為原點,點A的坐標為(0,8),點C的坐標為(6,0).拋物線y=﹣x2+bx+c經過點A、C,與AB交于點D.
(1)求拋物線的函數(shù)解析式;
(2)點P為線段BC上一個動點(不與點C重合),點Q為線段AC上一個動點,AQ=CP,連接PQ,設CP=m,△CPQ的面積為S.
①求S關于m的函數(shù)表達式;
②當S最大時,在拋物線y=﹣x2+bx+c的對稱軸l上,若存在點F,使△DFQ為直角三角形,請直接寫出所有符合條件的點F的坐標;若不存在,請說明理由.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,在Rt△ABC中,∠ACB=90°,將△ABC繞頂點C逆時針旋轉得到△A′B′C′,M是BC的中點,P是A'B’的中點,連接PM,若BC=4,AC=3,則在旋轉的過程中,線段PM的長度不可能是( 。
A.5B.4.5C.2.5D.0.5
查看答案和解析>>
湖北省互聯(lián)網違法和不良信息舉報平臺 | 網上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com