【題目】已知二次函數(shù)y(xm)21.

1)當二次函數(shù)的圖象經(jīng)過坐標原點O(00)時,求二次函數(shù)的解析式;

2)如下圖,當m2時,該拋物線與軸交于點C,頂點為D,求CD 兩點的坐標;

【答案】1yx22xyx22x;(2C(03),D(2,-1)

【解析】

1)根據(jù)二次函數(shù)的圖象經(jīng)過坐標原點O0,0),直接代入求出m的值即可得二次函數(shù)的解析式;
2)根據(jù)m=2,代入求出二次函數(shù)解析式,進而利用配方法求出頂點坐標以及圖象與y軸交點即可.

解:(1)∵二次函數(shù)的圖象經(jīng)過坐標原點O(00)
∴代入二次函數(shù)y(xm)21m210,得m±1,

所以二次函數(shù)的解析式為yx22xyx22x;

2)當m2時,y(x2)21,

D(2,-1),

又當x0時,y3,

C(0,3)

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】今年98日,重慶首家海底撈在來福士廣場正式開始試營業(yè),由于重慶人偏好麻辣口味,海底撈來福士店在原有番茄、紅湯牛油、菌菇等多種常規(guī)鍋底的基礎(chǔ)上,專門為重慶人私人訂制了一種雙椒鍋底.開業(yè)當天,人氣爆滿,番茄鍋和雙椒鍋成為最受歡迎的兩種鍋底,總計銷售300份,銷售總額為9800元.其中雙椒鍋的銷售單價是42元,番茄鍋的銷售單價為28元.

1)求開業(yè)當天番茄鍋銷售數(shù)量;

2)試營業(yè)一段時間后,商家發(fā)現(xiàn)番茄鍋和雙椒鍋的日均銷量之比為32.為了慶祝國慶,回饋廣大顧客,海底撈在國慶期間推出了優(yōu)惠活動,在原有售價的基礎(chǔ)上將番茄鍋降價a%,雙椒鍋降價a%進行銷售.101日當天,番茄鍋的銷量比日均銷量增加了a%,而雙椒鍋的銷量比日均銷量增加了2a%,結(jié)果當天這兩種鍋底的銷售總額比日均銷售總額多了a%,求a的值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,已知拋物線的頂點為A(1,4),拋物線與y軸交于點B(0,3),與x軸交于C、D兩點.點P是x軸上的一個動點.

(1)求此拋物線的解析式;

(2)求C、D兩點坐標及BCD的面積;

(3)若點P在x軸上方的拋物線上,滿足SPCD=SBCD,求點P的坐標.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】同時拋擲A、B兩個均勻的小立方體(每個面上分別標有數(shù)字1,2,34,5,6),設(shè)兩立方體朝上的數(shù)字分別為x、y,并以此確定點Pxy),那么點P落在拋物線上的概率為(

A.B.C.D.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,已知二次函數(shù)的圖象經(jīng)過點A4,4),B50)和原點O,P為二次函數(shù)圖象上的一個動點,過點Px軸的垂線,垂足為Dm,0),并與直線OA相較于點C

1)求出二次函數(shù)的解析式;

2)當點P在直線OA的上方時,求線段PC的最大值;

3)當點P在直線OA的上方時,是否存在一點P,使射線OP平分∠AOy,若存在,請求出P點坐標;若不存在.請說明理由;

4)當m0時,探索是否存在點P,使得△PCO為等腰三角形,若存在,求出P點的坐標;若不存在,請說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,已知拋物線的頂點為A(1,4),拋物線與y軸交于點B(0,3),與x軸交于C、D兩點.Px軸上的一個動點.

(1)求此拋物線的解析式;

(2)PA+PB的值最小時,求點P的坐標.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,已知的直徑,點、上,,過點作,垂足為

的長;

的延長線交于點,求弦和弧圍成的圖形(陰影部分)的面積

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,ABC的內(nèi)切圓⊙OBC,CAAB分別相切于點D,EF.且AB5,AC12,BC13,則⊙O的半徑是_____

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】2016年3月國際風(fēng)箏節(jié)期間,王大伯決定銷售一批風(fēng)箏,經(jīng)市場調(diào)研:蝙蝠型風(fēng)箏進價每個為10元,當售價每個為12元時,銷售量為180個,若售價每提高1元,銷售量就會減少10個,請回答以下問題:

(1)用表達式表示蝙蝠型風(fēng)箏銷售量y(個)與售價x(元)之間的函數(shù)關(guān)系(12≤x≤30);

(2)王大伯為了讓利給顧客,并同時獲得840元利潤,售價應(yīng)定為多少?

(3)當售價定為多少時,王大伯獲得利潤W最大,最大利潤是多少?

查看答案和解析>>

同步練習(xí)冊答案