【題目】如圖,已知∠AOB的大小為α,P是∠AOB內(nèi)部的一個定點,且OP2,點EF分別是OA、OB上的動點,若△PEF周長的最小值等于2,則α=(

A. 30°B. 45°C. 60°D. 15°

【答案】A

【解析】

設(shè)點P關(guān)于OA的對稱點為C,關(guān)于OB的對稱點為D,當點E、FCD上時,PEF的周長為PE+EF+FP=CD,此時周長最小,根據(jù)CD=2可求出α的度數(shù).

如圖,作點P關(guān)于OA的對稱點C,關(guān)于OB的對稱點D,連接CD,交OAE,OBF.此時,PEF的周長最。

連接OC,OD,PEPF

∵點P與點C關(guān)于OA對稱,

OA垂直平分PC,

∴∠COA=AOPPE=CE,OC=OP

同理,可得∠DOB=BOP,PF=DFOD=OP

∴∠COA+DOB=AOP+BOP=AOB=α,OC=OD=OP=2

∴∠COD=2α

又∵△PEF的周長=PE+EF+FP=CE+EF+FD=CD=2,

OC=OD=CD=2

∴△COD是等邊三角形,

2α=60°,

α=30°

故選A

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】在數(shù)學(xué)實踐課上,老師在黑板上畫出如下的圖形(其中點B、FC、E在同一條直線上),并寫出四個條件:①ABDE,②∠1=2.BFEC④∠BE,交流中老師讓同學(xué)們從這四個條件中選出三個作為題設(shè),另一個作為結(jié)論,組成一個真命題.

(1)寫出所有的真命題.(用序號表示題設(shè)、結(jié)論)

(2)請選擇一個給予證明.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】△ABC中,AB=AC,點D是直線BC上一點(不與B、C重合),以AD為一邊在AD右側(cè)△ADE,使AD=AE,∠DAE =∠BAC,連接CE.

(1)如圖1,當點D在線段BC上,如果∠BAC=90°,則∠BCE=________度;

(2)設(shè)

①如圖2,當點在線段BC上移動,則,之間有怎樣的數(shù)量關(guān)系?請說明理由;

②當點在直線BC上移動,則,之間有怎樣的數(shù)量關(guān)系?請直接寫出你的結(jié)論.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在ABC中,∠ACB90°D,E分別為ABAC上一點,將BCDADE分別沿CD,DE折疊,點A、B恰好重合于點A'處.若∠A'CA18°,則∠A____°

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】我市某農(nóng)場有A、B兩種型號的收割機共20臺,每臺A型收割機每天可收大麥100畝或者小麥80畝,每臺B型收割機每天可收大麥80畝或者小麥60畝,該農(nóng)場現(xiàn)有19 000畝大麥和11 500畝小麥先后等待收割.先安排這20臺收割機全部收割大麥,并且恰好10天時間全部收完.

(1)問A、B兩種型號的收割機各多少臺?

(2)由于氣候影響,要求通過加班方式使每臺收割機每天多完成10%的收割量,問這20臺收割機能否在一周時間內(nèi)完成全部小麥收割任務(wù)?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在△ABC中,ABAC,點DC的中點,AC的垂直平分線分別交AC,AD,AB于點EO,F.

(1)求證:OAB的垂直平分線上;

(2)若∠CAD20°,求∠BOF的度數(shù).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】某年5月,我國南方某省A、B兩市遭受嚴重洪澇災(zāi)害,1.5萬人被迫轉(zhuǎn)移,鄰近縣市C、D獲知A、B兩市分別急需救災(zāi)物資200噸和300噸的消息后,決定調(diào)運物資支援災(zāi)區(qū).已知C市有救災(zāi)物資240噸,D市有救災(zāi)物資260噸,現(xiàn)將這些救災(zāi)物資全部調(diào)往A、B兩市.已知從C市運往A、B兩市的費用分別為每噸20元和25元,從D市運往往A、B兩市的費用別為每噸15元和30元,設(shè)從D市運往B市的救災(zāi)物資為x噸.

(1)請?zhí)顚懴卤?/span>

A(噸)

B(噸)

合計(噸)

C

   

   

240

D

   

x

260

總計(噸)

200

300

500

(2)設(shè)C、D兩市的總運費為w元,求wx之間的函數(shù)關(guān)系式,并寫出自變量x的取值范圍;

(3)經(jīng)過搶修,從D市到B市的路況得到了改善,縮短了運輸時間,運費每噸減少m元(m>0),其余路線運費不變.若C、D兩市的總運費的最小值不小于10320元,求m的取值范圍.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,OAB是邊長為2+的等邊三角形,其中O是坐標原點,頂點By軸正方向上,將OAB折疊,使點A落在邊OB上,記為A′,折痕為EF

1)當A′Ex軸時,求點A′E的坐標;

2)當A′Ex軸,且拋物線y=x2+bx+c經(jīng)過點A′E時,求拋物線與x軸的交點的坐標;

3)當點A′OB上運動,但不與點O、B重合時,能否使A′EF成為直角三角形?若能,請求出此時點A′的坐標;若不能,請你說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】某地電話撥號入網(wǎng)有兩種收費方式,用戶可以任選其一.

計時制:0.05/;

包月制:50/(限一部個人住宅電話上網(wǎng)).

此外,每一種上網(wǎng)方式都得加收通信費0.02/.

(1)某用戶某月上網(wǎng)的時間為x小時,請你分別寫出兩種收費方式下該用戶應(yīng)該支付的費用.

(2)若某用戶估計一個月內(nèi)上網(wǎng)的時間為20小時,你認為采用哪種方式較為合算?

查看答案和解析>>

同步練習(xí)冊答案