【題目】如圖,已知∠AOB的大小為α,P是∠AOB內(nèi)部的一個定點,且OP=2,點E、F分別是OA、OB上的動點,若△PEF周長的最小值等于2,則α=( )
A. 30°B. 45°C. 60°D. 15°
【答案】A
【解析】
設(shè)點P關(guān)于OA的對稱點為C,關(guān)于OB的對稱點為D,當點E、F在CD上時,△PEF的周長為PE+EF+FP=CD,此時周長最小,根據(jù)CD=2可求出α的度數(shù).
如圖,作點P關(guān)于OA的對稱點C,關(guān)于OB的對稱點D,連接CD,交OA于E,OB于F.此時,△PEF的周長最。
連接OC,OD,PE,PF.
∵點P與點C關(guān)于OA對稱,
∴OA垂直平分PC,
∴∠COA=∠AOP,PE=CE,OC=OP,
同理,可得∠DOB=∠BOP,PF=DF,OD=OP.
∴∠COA+∠DOB=∠AOP+∠BOP=∠AOB=α,OC=OD=OP=2,
∴∠COD=2α.
又∵△PEF的周長=PE+EF+FP=CE+EF+FD=CD=2,
∴OC=OD=CD=2,
∴△COD是等邊三角形,
∴2α=60°,
∴α=30°.
故選A.
科目:初中數(shù)學(xué) 來源: 題型:
【題目】在數(shù)學(xué)實踐課上,老師在黑板上畫出如下的圖形(其中點B、F、C、E在同一條直線上),并寫出四個條件:①AB=DE,②∠1=∠2.③BF=EC,④∠B=∠E,交流中老師讓同學(xué)們從這四個條件中選出三個作為題設(shè),另一個作為結(jié)論,組成一個真命題.
(1)寫出所有的真命題.(用序號表示題設(shè)、結(jié)論)
(2)請選擇一個給予證明.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】在△ABC中,AB=AC,點D是直線BC上一點(不與B、C重合),以AD為一邊在AD的右側(cè)作△ADE,使AD=AE,∠DAE =∠BAC,連接CE.
(1)如圖1,當點D在線段BC上,如果∠BAC=90°,則∠BCE=________度;
(2)設(shè),.
①如圖2,當點在線段BC上移動,則,之間有怎樣的數(shù)量關(guān)系?請說明理由;
②當點在直線BC上移動,則,之間有怎樣的數(shù)量關(guān)系?請直接寫出你的結(jié)論.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在△ABC中,∠ACB=90°,D,E分別為AB,AC上一點,將△BCD,△ADE分別沿CD,DE折疊,點A、B恰好重合于點A'處.若∠A'CA=18°,則∠A=____°.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】我市某農(nóng)場有A、B兩種型號的收割機共20臺,每臺A型收割機每天可收大麥100畝或者小麥80畝,每臺B型收割機每天可收大麥80畝或者小麥60畝,該農(nóng)場現(xiàn)有19 000畝大麥和11 500畝小麥先后等待收割.先安排這20臺收割機全部收割大麥,并且恰好10天時間全部收完.
(1)問A、B兩種型號的收割機各多少臺?
(2)由于氣候影響,要求通過加班方式使每臺收割機每天多完成10%的收割量,問這20臺收割機能否在一周時間內(nèi)完成全部小麥收割任務(wù)?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在△ABC中,AB=AC,點D是C的中點,AC的垂直平分線分別交AC,AD,AB于點E,O,F.
(1)求證:點O在AB的垂直平分線上;
(2)若∠CAD=20°,求∠BOF的度數(shù).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】某年5月,我國南方某省A、B兩市遭受嚴重洪澇災(zāi)害,1.5萬人被迫轉(zhuǎn)移,鄰近縣市C、D獲知A、B兩市分別急需救災(zāi)物資200噸和300噸的消息后,決定調(diào)運物資支援災(zāi)區(qū).已知C市有救災(zāi)物資240噸,D市有救災(zāi)物資260噸,現(xiàn)將這些救災(zāi)物資全部調(diào)往A、B兩市.已知從C市運往A、B兩市的費用分別為每噸20元和25元,從D市運往往A、B兩市的費用別為每噸15元和30元,設(shè)從D市運往B市的救災(zāi)物資為x噸.
(1)請?zhí)顚懴卤?/span>
A(噸) | B(噸) | 合計(噸) | |
C |
|
| 240 |
D |
| x | 260 |
總計(噸) | 200 | 300 | 500 |
(2)設(shè)C、D兩市的總運費為w元,求w與x之間的函數(shù)關(guān)系式,并寫出自變量x的取值范圍;
(3)經(jīng)過搶修,從D市到B市的路況得到了改善,縮短了運輸時間,運費每噸減少m元(m>0),其余路線運費不變.若C、D兩市的總運費的最小值不小于10320元,求m的取值范圍.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,△OAB是邊長為2+的等邊三角形,其中O是坐標原點,頂點B在y軸正方向上,將△OAB折疊,使點A落在邊OB上,記為A′,折痕為EF.
(1)當A′E∥x軸時,求點A′和E的坐標;
(2)當A′E∥x軸,且拋物線y=﹣x2+bx+c經(jīng)過點A′和E時,求拋物線與x軸的交點的坐標;
(3)當點A′在OB上運動,但不與點O、B重合時,能否使△A′EF成為直角三角形?若能,請求出此時點A′的坐標;若不能,請你說明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】某地電話撥號入網(wǎng)有兩種收費方式,用戶可以任選其一.
計時制:0.05元/分;
包月制:50元/月(限一部個人住宅電話上網(wǎng)).
此外,每一種上網(wǎng)方式都得加收通信費0.02元/分.
(1)某用戶某月上網(wǎng)的時間為x小時,請你分別寫出兩種收費方式下該用戶應(yīng)該支付的費用.
(2)若某用戶估計一個月內(nèi)上網(wǎng)的時間為20小時,你認為采用哪種方式較為合算?
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com