【題目】在平面直角坐標系xOy中,邊長為a(a為大于0的常數(shù))的正方形ABCD的對角線AC、BD相交于點P,頂點A在x軸正半軸上運動,頂點B在y軸正半軸上運動(x軸的正半軸、y軸的正半軸都不包含原點O),頂點C、D都在第一象限.
(1)當(dāng)∠BAO=45°時,求點P的坐標;
(2)求證:無論點A在x軸正半軸上、點B在y軸正半軸上怎樣運動,點P都在∠AOB的平分線上;
(3)設(shè)點P到x軸的距離為h,試確定h的取值范圍,并說明理由.

【答案】
(1)解:∵∠BPA=90°,PA=PB,

∴∠PAB=45°,

∵∠BAO=45°,

∴∠PAO=90°,

∴四邊形OAPB是正方形,

∴P點的坐標為:( a, a)


(2)證明:作PE⊥x軸交x軸于E點,作PF⊥y軸交y軸于F點,

∵∠BPE+∠EPA=90°,∠EPB+∠FPB=90°,

∴∠FPB=∠EPA,

∵∠PFB=∠PEA,BP=AP,

∴△PBF≌△PAE,

∴PE=PF,

∴點P都在∠AOB的平分線上


(3)解:作PE⊥x軸交x軸于E點,作PF⊥y軸交y軸于F點,則PE=h,設(shè)∠APE=α.

在直角△APE中,∠AEP=90°,PA= ,

∴PE=PAcosα= cosα,

又∵頂點A在x軸正半軸上運動,頂點B在y軸正半軸上運動(x軸的正半軸、y軸的正半軸都不包含原點O),

∴0°≤α<45°,

<h≤


【解析】(1)當(dāng)∠BAO=45°時,因為四邊形ABCD是正方形,P是AC,BD對角線的交點,能證明OAPB是正方形,從而求出P點的坐標.(2)過P點作x軸和y軸的垂線,可通過三角形全等,證明是角平分線.(3)因為點P在∠AOB的平分線上,所以h>0.
【考點精析】解答此題的關(guān)鍵在于理解正方形的性質(zhì)的相關(guān)知識,掌握正方形四個角都是直角,四條邊都相等;正方形的兩條對角線相等,并且互相垂直平分,每條對角線平分一組對角;正方形的一條對角線把正方形分成兩個全等的等腰直角三角形;正方形的對角線與邊的夾角是45o;正方形的兩條對角線把這個正方形分成四個全等的等腰直角三角形,以及對解直角三角形的理解,了解解直角三角形的依據(jù):①邊的關(guān)系a2+b2=c2;②角的關(guān)系:A+B=90°;③邊角關(guān)系:三角函數(shù)的定義.(注意:盡量避免使用中間數(shù)據(jù)和除法)

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】在平面直角坐標系XOY中,直線l1過點A(1,0)且與y軸平行,直線l2過點B(0,2)且與x軸平行,直線l1與直線l2相交于點P.點E為直線l2上一點,反比例函數(shù) (k>0)的圖象過點E與直線l1相交于點F.
(1)若點E與點P重合,求k的值;
(2)連接OE、OF、EF.若k>2,且△OEF的面積為△PEF的面積的2倍,求E點的坐標;
(3)是否存在點E及y軸上的點M,使得以點M、E、F為頂點的三角形與△PEF全等?若存在,求E點坐標;若不存在,請說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,從⊙O外一點A引圓的切線AB,切點為B,連接AO并延長交圓于點C,連接BC.若∠A=26°,則∠ACB的度數(shù)為

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,直角三角形紙片ABC的∠C為90°,將三角形紙片沿著圖示的中位線DE剪開,然后把剪開的兩部分重新拼接成不重疊的圖形,下列選項中不能拼出的圖形是(
A.平行四邊形
B.矩形
C.等腰梯形
D.直角梯形

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在Rt△ABC中,∠C=90°,∠B=15°,DE垂直平分ABBC于點E,BE=4,則AC長為( )

A. 2 B. 3 C. 4 D. 以上都不對

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】填寫理由:

如圖所示,

因為DFAC(已知),

所以D+______=180°(__________________________)

因為C=D(已知),

所以C+_______=180°(_________________________)

所以DBEC(_________).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖①,小慧同學(xué)把一個正三角形紙片(即△OAB)放在直線l1上.OA邊與直線l1重合,然后將三角形紙片繞著頂點A按順吋針方向旋轉(zhuǎn)120°,此時點O運動到了點O1處,點B運動到了點B1處;小慧又將三角形紙片AO1B1 , 繞點B1按順吋針方向旋轉(zhuǎn) 120°,此時點A運動到了點A1處,點O1運動到了點O2處(即頂點O經(jīng)過上述兩次旋轉(zhuǎn)到達O2處). 小慧還發(fā)現(xiàn):三角形紙片在上述兩次旋轉(zhuǎn)的過程中.頂點O運動所形成的圖形是兩段圓弧,即 ,頂點O所經(jīng)過的路程是這兩段圓弧的長度之和,并且這兩段圓弧與直線l1圍成的圖形面積等于扇形A001的面積、△AO1B1的面積和扇形B1O1O2的面積之和.
小慧進行類比研究:如圖②,她把邊長為1的正方形紙片0ABC放在直線l2上,0A邊與直線l2重合,然后將正方形紙片繞著頂點A按順時針方向旋轉(zhuǎn)90°,此時點O運動到了點O1處(即點B處),點C運動到了點C1處,點B運動到了點B2處,小慧又將正方形紙片 AO1C1B1繞頂點B1按順時針方向旋轉(zhuǎn)90°,….按上述方法經(jīng)過若干次旋轉(zhuǎn)后,她提出了如下問題:
問題①:若正方形紙片0ABC按上述方法經(jīng)過3次旋轉(zhuǎn),求頂點0經(jīng)過的路程,并求頂點O在此運動過程中所形成的圖形與直線l2圍成圖形的面積;若正方形紙片OABC按上述方法經(jīng)過5次旋轉(zhuǎn).求頂點O經(jīng)過的路程;
問題②:正方形紙片OABC按上述方法經(jīng)過多少次旋轉(zhuǎn),頂點0經(jīng)過的路程是 ?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在Rt△ABC中,∠ACB=90°,AC=6cm,BC=8cm.P為BC的中點,動點Q從點P出發(fā),沿射線PC方向以2cm/s的速度運動,以P為圓心,PQ長為半徑作圓.設(shè)點Q運動的時間為t s.
(1)當(dāng)t=1.2時,判斷直線AB與⊙P的位置關(guān)系,并說明理由;
(2)已知⊙O為△ABC的外接圓.若⊙P與⊙O相切,求t的值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,AB是⊙O的直徑,AC切⊙O于A,BC交⊙O于點D,若∠C=70°,則∠AOD的度數(shù)為(
A.70°
B.35°
C.20°
D.40°

查看答案和解析>>

同步練習(xí)冊答案