如圖,△ABC中,D為AB上一點(diǎn),E為BC上一點(diǎn),且AC=CD=BD=BE,∠A=50°,則∠CDE的度數(shù)為( )

A.50°
B.51°
C.51.5°
D.52.5°
【答案】分析:根據(jù)等腰三角形的性質(zhì)推出∠A=∠CDA=50°,∠B=∠DCB,∠BDE=∠BED,根據(jù)三角形的外角性質(zhì)求出∠B=25°,由三角形的內(nèi)角和定理求出∠BDE,根據(jù)平角的定義即可求出選項(xiàng).
解答:解:∵AC=CD=BD=BE,∠A=50°,
∴∠A=∠CDA=50°,∠B=∠DCB,∠BDE=∠BED,
∵∠B+∠DCB=∠CDA=50°,
∴∠B=25°,
∵∠B+∠EDB+∠DEB=180°,
∴∠BDE=∠BED=(180°-25°)=77.5°,
∴∠CDE=180°-∠CDA-∠EDB=180°-50°-77.5°=52.5°,
故選D.
點(diǎn)評(píng):本題主要考查對(duì)等腰三角形的性質(zhì),三角形的內(nèi)角和定理,三角形的外角性質(zhì),鄰補(bǔ)角的定義等知識(shí)點(diǎn)的理解和掌握,熟練地運(yùn)用這些性質(zhì)進(jìn)行計(jì)算是解此題的關(guān)鍵.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

26、已知:如圖,△ABC中,點(diǎn)D在AC的延長(zhǎng)線上,CE是∠DCB的角平分線,且CE∥AB.
求證:∠A=∠B.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

27、已知:如圖,△ABC中,∠BAC=60°,D、E兩點(diǎn)在直線BC上,連接AD、AE.
求:∠1+∠2+∠3+∠4.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

27、如圖,△ABC中,AD⊥BC于D,DN⊥AC于N,DM⊥AB于M
求證:∠ANM=∠B.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

14、如圖,△ABC中,∠BAC=120°,AD⊥BC于D,且AB+BD=DC,則∠C的大小是(  )

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

精英家教網(wǎng)已知,如圖,△ABC中,點(diǎn)D在BC上,且∠1=∠C,∠2=2∠3,∠BAC=70°.
(1)求∠2的度數(shù);
(2)若畫(huà)∠DAC的平分線AE交BC于點(diǎn)E,則AE與BC有什么位置關(guān)系,請(qǐng)說(shuō)明理由.

查看答案和解析>>

同步練習(xí)冊(cè)答案