閱讀材料:如圖1,在平面直角坐標(biāo)系中,A、B兩點(diǎn)的坐標(biāo)分別為A(x1,y1),B(x2,y2),AB中點(diǎn)P的坐標(biāo)為(xp,yp).由xp﹣x1=x2﹣xp,得,同理,所以AB的中點(diǎn)坐標(biāo)為.由勾股定理得,所以A、B兩點(diǎn)間的距離公式為
注:上述公式對(duì)A、B在平面直角坐標(biāo)系中其它位置也成立.
解答下列問(wèn)題:

如圖2,直線(xiàn)l:y=2x+2與拋物線(xiàn)y=2x2交于A(yíng)、B兩點(diǎn),P為AB的中點(diǎn),過(guò)P作x軸的垂線(xiàn)交拋物線(xiàn)于點(diǎn)C.
(1)求A、B兩點(diǎn)的坐標(biāo)及C點(diǎn)的坐標(biāo);
(2)連結(jié)AB、AC,求證△ABC為直角三角形;
(3)將直線(xiàn)l平移到C點(diǎn)時(shí)得到直線(xiàn)l′,求兩直線(xiàn)l與l′的距離.
解:(1)由,解得:。
∴A,B兩點(diǎn)的坐標(biāo)分別為:A(),B(,)。
∵P是A,B的中點(diǎn),由中點(diǎn)坐標(biāo)公式得P點(diǎn)坐標(biāo)為(,3)。
又∵PC⊥x軸交拋物線(xiàn)于C點(diǎn),將x=代入y=2x2中得y=,
∴C點(diǎn)坐標(biāo)為(,)。
(2)證明:由兩點(diǎn)間距離公式得:
,,
∴PC=PA=PB。
∴∠PAC=∠PCA,∠PBC=∠PCB。
∴∠PAC+∠PCB=90°,即∠ACB=90°!唷鰽BC為直角三角形。
(3)如圖,過(guò)點(diǎn)C作CG⊥AB于G,過(guò)點(diǎn)A作AH⊥PC于H,
則H點(diǎn)的坐標(biāo)為(,)。
。
。
又直線(xiàn)l與l′之間的距離等于點(diǎn)C到l的距離CG,∴直線(xiàn)l與l′之間的距離為。
(1)根據(jù)y=2x+2與拋物線(xiàn)y=2x2交于A(yíng)、B兩點(diǎn),直接聯(lián)立求出交點(diǎn)坐標(biāo),進(jìn)而得出C點(diǎn)坐標(biāo)即可;
(2)利用兩點(diǎn)間距離公式得出AB的長(zhǎng),進(jìn)而得出PC=PA=PB,求出∠PAC+∠PCB=90°,即∠ACB=90°即可得出答案。
(3)過(guò)點(diǎn)C作CG⊥AB于G,過(guò)點(diǎn)A作AH⊥PC于H,利用A,C點(diǎn)坐標(biāo)得出H點(diǎn)坐標(biāo),進(jìn)而得出CG=AH,求出即可!
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

如圖,在平面直角坐標(biāo)系xOy中,矩形OABC的邊OA、OC分別在y軸和x軸的正半軸上,且長(zhǎng)分別為m、4m(m>0),D為邊AB的中點(diǎn),一拋物線(xiàn)l經(jīng)過(guò)點(diǎn)A、D及點(diǎn)M(﹣1,﹣1﹣m).

(1)求拋物線(xiàn)l的解析式(用含m的式子表示);
(2)把△OAD沿直線(xiàn)OD折疊后點(diǎn)A落在點(diǎn)A′處,連接OA′并延長(zhǎng)與線(xiàn)段BC的延長(zhǎng)線(xiàn)交于點(diǎn)E,若拋物線(xiàn)l與線(xiàn)段CE相交,求實(shí)數(shù)m的取值范圍;
(3)在滿(mǎn)足(2)的條件下,求出拋物線(xiàn)l頂點(diǎn)P到達(dá)最高位置時(shí)的坐標(biāo).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

如圖,已知拋物線(xiàn)y=ax2+bx+3與x軸交于A(yíng)、B兩點(diǎn),過(guò)點(diǎn)A的直線(xiàn)l與拋物線(xiàn)交于點(diǎn)C,其中A點(diǎn)的坐標(biāo)是(1,0),C點(diǎn)坐標(biāo)是(4,3).

(1)求拋物線(xiàn)的解析式;
(2)在(1)中拋物線(xiàn)的對(duì)稱(chēng)軸上是否存在點(diǎn)D,使△BCD的周長(zhǎng)最。咳舸嬖,求出點(diǎn)D的坐標(biāo),若不存在,請(qǐng)說(shuō)明理由;
(3)若點(diǎn)E是(1)中拋物線(xiàn)上的一個(gè)動(dòng)點(diǎn),且位于直線(xiàn)AC的下方,試求△ACE的最大面積及E點(diǎn)的坐標(biāo).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

如圖,在平面直角坐標(biāo)系中,頂點(diǎn)為(3,4)的拋物線(xiàn)交 y軸與A點(diǎn),交x軸與B、C兩點(diǎn)(點(diǎn)B在點(diǎn)C的左側(cè)),已知A點(diǎn)坐標(biāo)為(0,-5).

(1)求此拋物線(xiàn)的解析式;
(2)過(guò)點(diǎn)B作線(xiàn)段AB的垂線(xiàn)交拋物線(xiàn)與點(diǎn)D,如果以點(diǎn)C為圓心的圓與直線(xiàn)BD相切,請(qǐng)判斷拋物線(xiàn)的對(duì)稱(chēng)軸與⊙C的位置關(guān)系,并給出證明.
(3)在拋物線(xiàn)上是否存在一點(diǎn)P,使△ACP是以AC為直角邊的直角三角形.若存在,求點(diǎn)P的坐標(biāo);若不存在,請(qǐng)說(shuō)明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

已知:拋物線(xiàn)C1:y=x2。如圖(1),平移拋物線(xiàn)C1得到拋物線(xiàn)C2,C2經(jīng)過(guò)C1的頂點(diǎn)O和A(2,0),C2的對(duì)稱(chēng)軸分別交C1、C2于點(diǎn)B、D。

(1)求拋物線(xiàn)C2的解析式;
(2)探究四邊形ODAB的形狀并證明你的結(jié)論;
(3)如圖(2),將拋物線(xiàn)C2向下平移m個(gè)單位(m>0)得拋物線(xiàn)C3,C3的頂點(diǎn)為G,與y軸交于M。點(diǎn)N是M關(guān)于x軸的對(duì)稱(chēng)點(diǎn),點(diǎn)P()在直線(xiàn)MG上。問(wèn):當(dāng)m為何值時(shí),在拋物線(xiàn)C3上存在點(diǎn)Q,使得以M、N、P、Q為頂點(diǎn)的四邊形為平行四邊形?

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

如圖,在平面直角坐標(biāo)系中有一矩形ABCO(O為原點(diǎn)),點(diǎn)A、C分別在x軸、y軸上,且C點(diǎn)坐標(biāo)為(0,6),將△BCD沿BD折疊(D點(diǎn)在OC邊上),使C點(diǎn)落在DA邊的E點(diǎn)上,并將△BAE沿BE折疊,恰好使點(diǎn)A落在BD邊的F點(diǎn)上.

(1)求BC的長(zhǎng),并求折痕BD所在直線(xiàn)的函數(shù)解析式;
(2)過(guò)點(diǎn)F作FG⊥x軸,垂足為G,F(xiàn)G的中點(diǎn)為H,若拋物線(xiàn)經(jīng)過(guò)B,H, D三點(diǎn),求拋物線(xiàn)解析式;
(3)點(diǎn)P是矩形內(nèi)部的點(diǎn),且點(diǎn)P在(2)中的拋物線(xiàn)上運(yùn)動(dòng)(不含B, D點(diǎn)),過(guò)點(diǎn)P作PN⊥BC,分別交BC 和 BD于點(diǎn)N, M,是否存在這樣的點(diǎn)P,使如果存在,求出點(diǎn)P的坐標(biāo);如果不存在,請(qǐng)說(shuō)明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

(2013年四川自貢14分)如圖,已知拋物線(xiàn)y=ax2+bx﹣2(a≠0)與x軸交于A(yíng)、B兩點(diǎn),與y軸交于C點(diǎn),直線(xiàn)BD交拋物線(xiàn)于點(diǎn)D,并且D(2,3),tan∠DBA=

(1)求拋物線(xiàn)的解析式;
(2)已知點(diǎn)M為拋物線(xiàn)上一動(dòng)點(diǎn),且在第三象限,順次連接點(diǎn)B、M、C、A,求四邊形BMCA面積的最大值;
(3)在(2)中四邊形BMCA面積最大的條件下,過(guò)點(diǎn)M作直線(xiàn)平行于y軸,在這條直線(xiàn)上是否存在一個(gè)以Q點(diǎn)為圓心,OQ為半徑且與直線(xiàn)AC相切的圓?若存在,求出圓心Q的坐標(biāo);若不存在,請(qǐng)說(shuō)明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源:不詳 題型:單選題

下列函數(shù)是二次函數(shù)的是【   】
A.B.C.D.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源:不詳 題型:單選題

拋物線(xiàn)y=ax2+bx+c(a<0)如圖所示,則關(guān)于x的不等式ax2+bx+c>0的解集是
A.x<2B.x>﹣3C.﹣3<x<1D.x<﹣3或x>1

查看答案和解析>>

同步練習(xí)冊(cè)答案