【題目】如圖,剪兩張等寬對(duì)邊平行的紙條,隨意交叉疊放在一起,轉(zhuǎn)動(dòng)其中的一張,重合的部分構(gòu)成了一個(gè)四邊形,這個(gè)四邊形是 .
【答案】菱形
【解析】解:過點(diǎn)D分別作AB,BC邊上的高為AE,AF,
∵四邊形ABCD是用兩張等寬的紙條交叉重疊地放在一起而組成的圖形,
∴AB∥CD,AD∥BC,
∴四邊形ABCD是平行四邊形(對(duì)邊相互平行的四邊形是平行四邊形);
∵DE⊥AB,DF⊥BC,
∴DE=DF(兩紙條相同,紙條寬度相同),
∵S平行四邊形ABCD=ABED=BCDF,
∴AB=CB,
∴四邊形ABCD是菱形,
所以答案是:菱形.
【考點(diǎn)精析】通過靈活運(yùn)用菱形的判定方法,掌握任意一個(gè)四邊形,四邊相等成菱形;四邊形的對(duì)角線,垂直互分是菱形.已知平行四邊形,鄰邊相等叫菱形;兩對(duì)角線若垂直,順理成章為菱形即可以解答此題.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,△ABD中,∠BAD=90°,AB=AD,△ACE中,∠CAE=90°,AC=AE。
(1)求證:DC=BE;
(2)試判斷∠AFD和∠AFE的大小關(guān)系,并說明理由。
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】觀察下列等式:
第一個(gè)等式:;
第二個(gè)等式:;
第三個(gè)等式:;
第四個(gè)等式:;
按上述規(guī)律,回答下列問題:
(1)請(qǐng)寫出第六個(gè)等式:a6= = ;
(2)用含n的代數(shù)式表示第n個(gè)等式:an= = ;
(3)a1+a2+a3+a4+a5+a6= (得出最簡(jiǎn)結(jié)果);
(4)計(jì)算:a1+a2+…+an.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,已知△ABC是等邊三角形,D為邊AC的中點(diǎn),AE⊥EC,BD=EC,
(1)說明△BCD與△CAE全等的理由
(2)請(qǐng)判斷△ADE的形狀,并說明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】端午節(jié)放假期間,小明和小華準(zhǔn)備到宜賓的蜀南竹海(記為A)、興文石海(記為B)、夕佳山民居(記為C)、李莊古鎮(zhèn)(記為D)的一個(gè)景點(diǎn)去游玩,他們各自在這四個(gè)景點(diǎn)中任選一個(gè),每個(gè)景點(diǎn)都被選中的可能性相同.
(1)小明選擇去蜀南竹海旅游的概率為 .
(2)用樹狀圖或列表的方法求小明和小華都選擇去興文石海旅游的概率.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】拋物線y=4x2﹣2ax+b與x軸相交于A(x1,0),B(x2,0)(0<x1<x2)兩點(diǎn),與y軸交于點(diǎn)C.
(1)設(shè)AB=2,tan∠ABC=4,求該拋物線的解析式;
(2)在(1)中,若點(diǎn)D為直線BC下方拋物線上一動(dòng)點(diǎn),當(dāng)△BCD的面積最大時(shí),求點(diǎn)D的坐標(biāo);
(3)是否存在整數(shù)a,b使得1<x1<2和1<x2<2同時(shí)成立,請(qǐng)證明你的結(jié)論.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,一艘海輪位于燈塔的北偏東方向,距離燈塔120海里的處,它沿正南方向航行一段時(shí)間后,到達(dá)位于燈塔的南偏東方向上的處,求和的長(zhǎng)(結(jié)果取整數(shù)).
參考數(shù)據(jù):,取.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】下列合并同類項(xiàng)正確的是( )
A. 5x2﹣2x2=3B. 3a+2b=5ab
C. 3ab﹣3ba=0D. 3x2+2x2=5x4
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com