【題目】如圖,已知點A1、A2、…A2018在函數(shù)y=2x2位于第二象限的圖象上,點B1、B2,…,B2018在函數(shù)y=2x2位于第一象限的圖象上,點C1,C2,…,C2018在y軸的正半軸上,若四邊形OA1C1B1、C1A2C2B2,…,C2017A2018C2018B2018都是正方形,則正方形C2017A2018C2018B2018的邊長是_____.
【答案】1009
【解析】
根據(jù)正方形對角線平分一組對角可得OB1與y軸的夾角為45°,然后表示出OB1的解析式,再與拋物線解析式聯(lián)立求出點B1的坐標,然后求出OB1的長,再根據(jù)正方形的性質求出OC1,表示出C1B2的解析式,與拋物線聯(lián)立求出B2的坐標,然后求出C1B2的長,再求出C1C2的長,然后表示出C2B3的解析式,與拋物線聯(lián)立求出B3的坐標,然后求出C2B3的長,從而根據(jù)邊長的變化規(guī)律解答即可.
解:∵OA1C1B1是正方形,
∴OB1與y軸的夾角為45°,
∴OB1的解析式為y=x,
聯(lián)立方程組得: ,
解得 , .
∴B點的坐標是:(,),
∴OB1= ==1×;
同理可得:正方形C1A2C2B2的邊長C1B2=2×;
…
依此類推,正方形C2017A2018C2018B2018的邊長是為2018×=1009.
故答案為1009.
科目:初中數(shù)學 來源: 題型:
【題目】如圖,將一副直角三角板拼在一起得四邊形ABCD,∠ACB=45°,∠ACD=30°,點E為CD邊上的中點,連接AE,將△ADE沿AE所在直線翻折得到△AD′E,D′E交AC于F點,若AB= 6cm,點D′到BC的距離是( )
A. B. C. D.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,一次函數(shù) y=-x+b 與反比例函數(shù)y=(x>0)的圖象交于 A,B 兩點,與 x 軸、y軸分別交于C,D 兩點,連接 OA,OB,過 A 作 AE⊥x 軸于點 E,交 OB 于點F,設點 A 的橫坐標為 m. 若 S△OAF+S 四邊形 EFBC=4,則 m 的值是( )
A. 1 B. C. D.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,二次函數(shù)y=ax2+bx+c 的圖象與 x 軸交于 B、C 兩點,交 y 軸于點 A.
(1)根據(jù)圖象請用“>”、“<”或“=”填空:a 0,b 0,c 0;
(2)如果 OC=OA= OB,BC=3,求這個二次函數(shù)的解析式;
(3) 在(2)中拋物線的對稱軸上,存在點 Q 使得△OQA 的周長最短,試求出點 Q 的坐標.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,直線y=2x+3與x軸相交于點A,與y軸相交于點B.
(1)求A,B兩點的坐標;
(2)過B點作直線BP與x軸相交于P,且使OP=2OA, 求ΔABP的面積.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】服裝店購進一批秋衣,價格為每件30元.物價部門規(guī)定其銷售單價不高于每件70元,經(jīng)市場調查發(fā)現(xiàn):日銷售量y(件)是銷售單價x(元)的一次函數(shù),且當x=60時,y=80;x=50時,y=100.在銷售過程中,每天還要支付其他費用450元.
(1)求出y與x的函數(shù)關系式.
(2)求該服裝店要想銷售這批秋衣日獲利750元,售價應定多少元?
(3)請銷售單價為多少元時,該服裝店日獲利最大?最大獲利是多少元?
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,四邊形ABCD內接于⊙O,AB為⊙O的直徑,CM切⊙O于點C,∠BCM=60°,則∠B的正切值是( 。
A. B. C. D.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com