【題目】如圖,△ABC為等邊三角形,AE=CD,AD、BE相交于點(diǎn)P,BQ⊥AD于Q.
(1)求證:△ADC≌△BEA;
(2)若PQ=4,PE=1,求AD的長.
【答案】(1)證明見解析;(2)9.
【解析】
試題(1)由已知可得△ABC是等邊三角形,從而得到∠BAC=∠C=60°,根據(jù)SAS即可判定△ADC≌△BEA;
(2)根據(jù)全等三角形的性質(zhì)可得到∠ABE=∠CAD,再根據(jù)等角的性質(zhì)即可求得∠BPQ=60°,再根據(jù)余角的性質(zhì)得到∠PBQ=30°,根據(jù)在直角三角形中30°的角對(duì)的邊是斜邊的一半即可證得結(jié)果.
試題解析:(1)∵AB=BC=AC,
∴△ABC是等邊三角形.
∴∠BAC=∠C=60°.
∵AB=AC,AE=CD,
∴△ADC≌△BEA.
(2)∵△ADC≌△BEA,
∴∠ABE=∠CAD.
∵∠CAD+∠BAD=60°,
∴∠ABE+∠BAD=60°.
∴∠BPQ=60°.
∵BQ⊥AD,
∴∠PBQ=30°.
∴BP=2PQ=8.
∴BE=BP+PE=8+1=9,
又BE=AD
∴AD=9.
考點(diǎn): 1.等邊三角形的判定與性質(zhì);2.三角形全等的判定與性質(zhì).
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】問題原型:如圖①,在等腰直角三角形ABC中,∠ACB=90°,BC=a.將邊AB繞點(diǎn)B順時(shí)針旋轉(zhuǎn)90°得到線段BD,連結(jié)CD.過點(diǎn)D作△BCD的BC邊上的高DE,
易證△ABC≌△BDE,從而得到△BCD的面積為 .
初步探究:如圖②,在Rt△ABC中,∠ACB=90°,BC=a.將邊AB繞點(diǎn)B順時(shí)針旋轉(zhuǎn)90°得到線段BD,連結(jié)CD.用含a的代數(shù)式表示△BCD的面積,并說明理由.
簡(jiǎn)單應(yīng)用:如圖③,在等腰三角形ABC中,AB=AC,BC=a.將邊AB繞點(diǎn)B順時(shí)針旋轉(zhuǎn)90°得到線段BD,連結(jié)CD.直接寫出△BCD的面積.(用含a的代數(shù)式表示)
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,已知△ABC中,AB=AC=12cm,且,BC=10cm,點(diǎn)D為AB的中點(diǎn).如果點(diǎn)P在線段BC上以2cm/s的速度由點(diǎn)B向C點(diǎn)運(yùn)動(dòng),同時(shí),點(diǎn)Q在線段AC上由點(diǎn)A向C點(diǎn)以4cm/s的速度運(yùn)動(dòng).
(1)若點(diǎn)P、Q兩點(diǎn)分別從B、A兩點(diǎn)同時(shí)出發(fā),經(jīng)過2秒后,△BPD與△CQP是否全等,請(qǐng)說明理由;
(2)若點(diǎn)P、Q兩點(diǎn)分別從B、A兩點(diǎn)同時(shí)出發(fā),△CPQ的周長為18cm,問:經(jīng)過幾秒后,△CPQ是等腰三角形?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】在“文博會(huì)”期間,某公司展銷如圖所示的長方形工藝品,該工藝品長60cm,寬40cm,中間鑲有寬度相同的三條絲綢花邊.
(1)若絲綢花邊的面積為650cm2 , 求絲綢花邊的寬度;
(2)已知該工藝品的成本是40元/件,如果以單價(jià)100元/件銷售,那么每天可售出200件,另每天所需支付的各種費(fèi)用2000元,根據(jù)銷售經(jīng)驗(yàn),如果將銷售單價(jià)降低1元,每天可多售出20件,同時(shí),為了完成銷售任務(wù),該公司每天至少要銷售800件,那么該公司應(yīng)該把銷售單價(jià)定為多少元,才能使每天所獲銷售利潤最大?最大利潤是多少?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖甲所示,已知AE⊥AB,AF⊥AC,AE=AB,AF=AC. BF與CE相交于點(diǎn)M
(1)求證:①△ACE≌△AFB;②EC⊥BF.
(2)如圖乙連接EF,畫出△ABC邊BC上的高線AD,延長DA交EF于點(diǎn)N,其他條件不變,下列四個(gè)結(jié)論:①∠EAN=∠ABC;
②△AEN≌△BAD;③;④EN=FN。
正確的結(jié)論是____________(把正確結(jié)論的序號(hào)全部填上)
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】(1)觀察推理:如圖1,△ABC中,∠ACB=90°,AC=BC,直線l過點(diǎn)C,點(diǎn)A、B在直線l同側(cè),BD⊥l,AE⊥l,垂足分別為D、E.求證:△AEC≌△CDB;
(2)類比探究:如圖2,Rt△ABC中,∠ACB=90°,AC=6,將斜邊AB繞點(diǎn)A逆時(shí)針旋轉(zhuǎn)90°至AB′,連接B′C,求△AB′C的面積.
(3)拓展提升:如圖3,等邊△EBC中,EC=BC=4cm,點(diǎn)O在BC上,且OC=3cm,動(dòng)點(diǎn)P從點(diǎn)E沿射線EC以2cm/s速度運(yùn)動(dòng),連結(jié)OP,將線段OP繞點(diǎn)O逆時(shí)針旋轉(zhuǎn)120°得到線段OF.要使點(diǎn)F恰好落在射線EB上,求點(diǎn)P運(yùn)動(dòng)的時(shí)間ts.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】甲、乙兩工程隊(duì)維修同一段路面,甲隊(duì)先清理路面,乙隊(duì)在甲隊(duì)清理后鋪設(shè)路面.乙隊(duì)在中途停工了一段時(shí)間,然后按停工前的工作效率繼續(xù)工作.在整個(gè)工作過程中,甲隊(duì)清理完的路面長y(米)與時(shí)間x(時(shí))的函數(shù)圖象為線段OA,乙隊(duì)鋪設(shè)完的路面長y(米)與時(shí)間x(時(shí))的函數(shù)圖象為折線BC-CD-DE,如圖所示,從甲隊(duì)開始工作時(shí)計(jì)時(shí).
(1)分別求線段BC、DE所在直線對(duì)應(yīng)的函數(shù)關(guān)系式.
(2)當(dāng)甲隊(duì)清理完路面時(shí),求乙隊(duì)鋪設(shè)完的路面長.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知二次函數(shù)y=ax2+bx+c的圖象C經(jīng)過(﹣5,0),(0, ),(1,6)三點(diǎn),直線l的解析式為y=2x﹣3.
(1)求拋物線C的解析式;
(2)判斷拋物線C與直線l有無交點(diǎn);
(3)若與直線l平行的直線y=2x+m與拋物線C只有一個(gè)公共點(diǎn)P,求點(diǎn)P的坐標(biāo).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】對(duì)非負(fù)實(shí)數(shù)x“四舍五入”到個(gè)位的值記為<x>,即:當(dāng)n為非負(fù)整數(shù)時(shí),如果n﹣ ≤x<n+ ,則<x>=n. 如:<0>=<0.48>=0,<0.64>=<1.493>=1,<2>=2,<3.5>=<4.12>=4,…
試解決下列問題:
(1)填空:①<π>=________;②如果<2x﹣1>=3,則實(shí)數(shù)x的取值范圍為________;
(2)①當(dāng)x≥0,m為非負(fù)整數(shù)時(shí),求證:<x+m>=m+<x>;②舉例說明<x+y>=<x>+<y>不恒成立;
(3)求滿足<x>= x的所有非負(fù)實(shí)數(shù)x的值.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com