【題目】直線AB、CD相交于點(diǎn)O,OE平分∠BOD.OF⊥CD,垂足為O,若∠EOF=54°.
(1)求∠AOC的度數(shù);
(2)作射線OG⊥OE,試求出∠AOG的度數(shù).
【答案】(1)72°(2)54°或126°
【解析】
(1)依據(jù)垂線的定義,即可得到∠DOE的度數(shù),再根據(jù)角平分線的定義,即可得到∠BOD的度數(shù),進(jìn)而得出結(jié)論;
(2)分兩種情況討論,依據(jù)垂線的定義以及角平分線的定義,即可得到∠AOG的度數(shù).
(1)∵OF⊥CD,∠EOF=54°,
∴∠DOE=90°﹣54°=36°,
又∵OE平分∠BOD,
∴∠BOD=2∠DOE=72°,
∴∠AOC=72°;
(2)如圖,若OG在∠AOD內(nèi)部,則
由(1)可得,∠BOE=∠DOE=36°,
又∵∠GOE=90°,
∴∠AOG=180°﹣90°﹣36°=54°;
如圖,若OG在∠COF內(nèi)部,則
由(1)可得,∠BOE=∠DOE=36°,
∴∠AOE=180°﹣36°=144°,
又∵∠GOE=90°,
∴∠AOG=360°﹣90°﹣144°=126°.
綜上所述,∠AOG的度數(shù)為54°或126°.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在5×5的正方形網(wǎng)格中,每個(gè)小正方形的邊長均為1,線段AB的端點(diǎn)在格點(diǎn)上,按要求畫出格點(diǎn)三角形,并求其面積.
(1)在圖①中畫出一個(gè)以 AB為腰的等腰三角形 ABC,其面積為____________.
(2) 在圖②中畫出一個(gè)以AB為底的等腰三角形ABC,其面積為__________.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】正方形ABCD的邊長為6cm,點(diǎn)E、M分別是線段BD、AD上的動(dòng)點(diǎn),連接AE并延長,交邊BC于F,過M作MN⊥AF,垂足為H,交邊AB于點(diǎn)N.
(1)如圖1,若點(diǎn)M與點(diǎn)D重合,求證:AF=MN;
(2)如圖2,若點(diǎn)M從點(diǎn)D出發(fā),以1cm/s的速度沿DA向點(diǎn)A運(yùn)動(dòng),同時(shí)點(diǎn)E從點(diǎn)B出發(fā),以 cm/s的速度沿BD向點(diǎn)D運(yùn)動(dòng),運(yùn)動(dòng)時(shí)間為t s.
①設(shè)BF=y cm,求y關(guān)于t的函數(shù)表達(dá)式;
②當(dāng)BN=2AN時(shí),連接FN,求FN的長.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖所示,直線AB,CD相交于點(diǎn)O,作∠DOE=∠BOD,OF平分∠AOE.
(1)判斷OF與OD的位置關(guān)系;
(2)若∠AOC∶∠AOD=1∶5,求∠EOF的度數(shù).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,直線AB、CD相交于點(diǎn)O,∠BOM=90°,∠DON=90°.
(1)若∠COM=∠AOC,求∠AOD的度數(shù);
(2)若∠COM=∠BOC,求∠AOC和∠MOD.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,點(diǎn)P是∠AOB的邊OB上的一點(diǎn),過點(diǎn)P畫OB的垂線,交OA于點(diǎn)C.
(1)過點(diǎn)P畫OA的垂線,垂足為H;
(2)線段PH的長度是點(diǎn)P到____的距離,____是點(diǎn)C到直線OB的距離.線段PC,PH,OC這三條線段大小關(guān)系是___.(用“<”號(hào)連接)
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,已知AB∥CD.
(1)判斷∠FAB與∠C的大小關(guān)系,請說明理由;
(2)若∠C=35°,AB是∠FAD的平分線.
①求∠FAD的度數(shù);
②若∠ADB=110°,求∠BDE的度數(shù).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在平面直角坐標(biāo)系中,直線l1:y=﹣x+1與x軸,y軸分別交于點(diǎn)A和點(diǎn)B,直線l2:y=kx(k≠0)與直線l1在第一象限交于點(diǎn)C.若∠BOC=∠BCO,則k的值為( 。
A. B. C. D. 2
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】家庭過期藥品屬于“國家危險(xiǎn)廢物“處理不當(dāng)將污染環(huán)境,危害健康。某市藥監(jiān)部門為了了解市民家庭處理過期藥品的方式,決定對全市家庭作一次簡單隨機(jī)抽樣調(diào)查
(1)下列選取樣本的方法最合理的一種是(只需填上正確答案的序號(hào))
①在市中心某個(gè)居民區(qū)以家庭為單位隨機(jī)抽取;
②在全市醫(yī)務(wù)工作者中以家庭為單位隨機(jī)抽取③在全市常住人口中以家庭為單位隨機(jī)抽取.
(2)本次抽樣調(diào)查發(fā)現(xiàn),接受調(diào)查的家庭都有過期藥品,現(xiàn)將有關(guān)數(shù)據(jù)呈現(xiàn)如下圖:
①求m、n的值.
②補(bǔ)全條形統(tǒng)計(jì)圖
③根據(jù)調(diào)查數(shù)據(jù),你認(rèn)為該市市民家庭處理過期藥品最常見的方式是什么?
④家庭過期藥品的正確處理方式是送回收點(diǎn),若該市有180萬戶家庭,請估計(jì)大約有多少戶家庭處理過期藥品的方式是送回收點(diǎn)。
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com