【題目】如圖,這是某地2014年和2015年糧食作物產(chǎn)量的條形統(tǒng)計圖,請你根據(jù)此圖判斷下列說法合理的是(  )

A.2015年三類農(nóng)作物的產(chǎn)量比2014年都有增加
B.玉米產(chǎn)量和雜糧產(chǎn)量增長率相當(dāng)
C.2014年雜糧產(chǎn)量是玉米產(chǎn)量的約七分之一
D.2014年和2015年的小麥產(chǎn)量基本持平

【答案】D
【解析】解:A、根據(jù)統(tǒng)計圖發(fā)現(xiàn)小麥有所下降,錯誤;
B、玉米產(chǎn)量和雜糧產(chǎn)量增加的數(shù)量基本一樣,但玉米的基數(shù)明顯>雜糧的基數(shù),所以兩者增加的幅度不一樣;
C、2014年雜糧產(chǎn)量是玉米產(chǎn)量的約十分之一,錯誤;
D、根據(jù)統(tǒng)計圖的高低得出2014年和2015年的小麥產(chǎn)量基本持平,正確.
故選:D.
【考點精析】本題主要考查了條形統(tǒng)計圖的相關(guān)知識點,需要掌握能清楚地表示出每個項目的具體數(shù)目,但是不能清楚地表示出各個部分在總體中所占的百分比以及事物的變化情況才能正確解答此題.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,把矩形ABCD沿EF翻折,點B恰好落在AD邊的B′處,若AE=2,DE=6,∠EFB=60°,則矩形ABCD的面積是( 。

A.12
B.24
C.12
D.16

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】3a=5,9b=10,則3a2b等于(  )

A. -50 B. 50 C. 500 D. 150

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,拋物線y=ax2+bx+cx軸于A(-40),B(1,0),交y軸于C點,且OC=2OB.

(1)求拋物線的解析式;

(2)在直線BC上找點D,使ABD為以AB為腰的等腰三角形,求D點的坐標(biāo);

(3)在拋物線上是否存在異于B的點P,過P點作PQACQ,使APQABC相似?若存在,請求出P點坐標(biāo);若不存在,請說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】一組數(shù)據(jù)﹣2、1、10、21.這組數(shù)據(jù)的眾數(shù)和中位數(shù)分別是( )

A. 20B. 1、0C. 1、1D. 2、1

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】下面的折線圖描述了某地某日的氣溫變化情況.根據(jù)圖中信息,下列說法錯誤的是(
A.4:00氣溫最低,14:00氣溫最高
B.12:00氣溫為30℃
C.這一天溫差為9℃
D.氣溫是24℃的為6:00和8:00

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】若關(guān)于x的一元二次方程x2﹣4x+m=0有兩個不相等的實數(shù)根,則m的取值范圍為

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】為了了解學(xué)生關(guān)注熱點新聞的情況,“兩會”期間,小明對班級同學(xué)一周內(nèi)收看“兩會”新聞的次數(shù)情況作了調(diào)查,調(diào)查結(jié)果統(tǒng)計如圖所示(其中男生收看3次的人數(shù)沒有標(biāo)出).
根據(jù)上述信息,解答下列問題:
(1)該班級女生人數(shù)是多少?女生收看“兩會”新聞次數(shù)的中位數(shù)是多少?
(2)對于某個群體,我們把一周內(nèi)收看熱點新聞次數(shù)不低于3次的人數(shù)占其所在群體總?cè)藬?shù)的百分比叫做該群體多某熱點新聞的“關(guān)注指數(shù)”,如果該班級男生對“兩會”新聞的“關(guān)注指數(shù)”比女生低5%,試求該班級男生人數(shù);
(3)為進(jìn)一步分析該班級男、女生收看“兩會”新聞次數(shù)的特點,小明給出了男生的部分統(tǒng)計量,根據(jù)你所學(xué)過的統(tǒng)計知識,適當(dāng)計算女生的有關(guān)統(tǒng)計量,進(jìn)而比較該班級男、女生收看“兩會”新聞次數(shù)的波動大。

統(tǒng)計量

平均數(shù)(次)

中位數(shù)(次)

眾數(shù)(次)

方差

該班級男生

3

3

4

2

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在Rt△ABC中,∠ACB=90°,過點C的直線MN∥AB,D為AB邊上一點,過點D作DE⊥BC,交直線MN于E,垂足為F,連接CD、BE.
(1)求證:CE=AD;
(2)當(dāng)D在AB中點時,四邊形BECD是什么特殊四邊形?說明你的理由;
(3)若D為AB中點,則當(dāng)∠A的大小滿足什么條件時,四邊形BECD是正方形?請說明你的理由.

查看答案和解析>>

同步練習(xí)冊答案