【題目】如圖,在△ABC中,AC=6,BC=8,若AC,BC邊上的中線BE,AD 垂直相交于點(diǎn)O,則AB=( )
A. 5 B. 4 C. 3 D. 2
【答案】D
【解析】
連接DE,根據(jù)三角形中線的定義可得E、D分別是AC、BC的中點(diǎn),由此可得DE是△ABC的中位線,根據(jù)中位線的性質(zhì)可得DE=AB,接下來根據(jù)勾股定理結(jié)合圖形即可解答.
解:∵BE、AD是△ABC的中線,AC=6,BC=8,
∴E、D分別是AC、BC的中點(diǎn),BD=CD=4,AE=CE=3,
∴DE是△ABC的中位線,DE=AB,
∵BE⊥AD,
∴BO2+DO2=BD2=16……①,
AO2+EO2+AE2=9……②,
DO2+EO2=DE2=AB2……③,
BO2+AO2=AB2……④,
∵①+②=BO2+DO2+AO2+EO2,③+④= BO2+DO2+AO2+EO2,
∴①+②=③+④,
∴16+9=AB2+AB2,
∴AB=2.
故選D.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】在平面直角坐標(biāo)系xOy中,點(diǎn)P的橫坐標(biāo)為x,縱坐標(biāo)為2x,滿足這樣條件的點(diǎn)稱為“關(guān)系點(diǎn)”.
(1)在點(diǎn)A(1,2)、B(2,1)、M(,1)、N(1, )中,是“關(guān)系點(diǎn)”的為 ;
(2)⊙O的半徑為1,若在⊙O上存在“關(guān)系點(diǎn)”P,求點(diǎn)P坐標(biāo);
(3)點(diǎn)C的坐標(biāo)為(3,0),若在⊙C上有且只有一個(gè)“關(guān)系點(diǎn)”P,且“關(guān)系點(diǎn)”P的橫坐標(biāo)滿足-2≤x≤2.請直接寫出⊙C的半徑r的取值范圍.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在△ABC中,∠ACB=90°,D是BC的中點(diǎn),DE⊥BC,CE∥AD,若AC=2,CE=4,求四邊形ACEB的周長.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,邊長為的等邊中,一動點(diǎn)沿從向移動,動點(diǎn)以同樣的速度從出發(fā)沿的延長線運(yùn)動,連交邊于,作于,則的長為__________.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】下列判斷正確的是( )
A. “任意選擇某一電視頻道,它正在播放動畫片”是必然事件
B. 某運(yùn)動員投一次籃,投中的概率為0.8,則該運(yùn)動員投5次籃,一定有4次投中
C. 任意拋擲一枚均勻的硬幣,反面朝上的概率為
D. 布袋里有3個(gè)白球,1個(gè)黑球.任意取出1個(gè)球,恰好是黑球的概率是
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】在平面直角坐標(biāo)系中,已知點(diǎn)A、B的坐標(biāo)分別為(10,0)、(0,4),C是AB的中點(diǎn),過點(diǎn)C作y軸的垂線,垂足為D,動點(diǎn)P從點(diǎn)D出發(fā),沿DC向點(diǎn)C以每秒1個(gè)單位勻速運(yùn)動,過點(diǎn)P作x軸的垂線,垂足為E,連接BP、EC.當(dāng)BP所在直線與EC所在直線垂直時(shí),點(diǎn)P運(yùn)動的時(shí)間為_____秒.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在長方形ABCD中,AB=8,AD=10,點(diǎn)E為BC上一點(diǎn),將△ABE沿AE折疊,使點(diǎn)B落在長方形內(nèi)點(diǎn)F處,且DF=6.
(1)試說明:△ADF是直角三角形;
(2)求BE的長.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】小聰和小明沿同一條路同時(shí)從學(xué)校出發(fā)到學(xué)校圖書館查閱資料,學(xué)校與圖書館的路程是千米,小聰騎自行車,小明步行,當(dāng)小聰從原路回到學(xué)校時(shí),小明剛好到達(dá)圖書館,圖中折線和線段分別表示兩人離學(xué)校的路程(千米)與所經(jīng)過的時(shí)間(分鐘)之間的函數(shù)關(guān)系,請根據(jù)圖象回答下列問題:
(1)小聰在圖書館查閱資料的時(shí)間為 分鐘,小聰返回學(xué)校的速度為 千米/分鐘;
(2)請你求出小明離開學(xué)校的路程(千米)與所經(jīng)過的時(shí)間(分鐘)之間的函數(shù)關(guān)系;
(3)求線段的函數(shù)關(guān)系式;
(4)當(dāng)小聰與小明迎面相遇時(shí),他們離學(xué)校的路程是多少千米?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,∠AOB=60°,OC平分∠AOB,P為射線OC上一點(diǎn),如果射線OA上的點(diǎn)D,滿足△OPD是等腰三角形,那么∠ODP的度數(shù)為( )
A.30°B.120°
C.30°或120°D.30°或75°或120°
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺 | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com